| ſ  |                       |                                          |
|----|-----------------------|------------------------------------------|
| ł  | 20139000/2013-32-9000 | SETC2013 Best Paper                      |
| ł  | 20139000/2013-32-9000 | SETC2013 High Quality Papers ( 9 papers) |
| ł  | 20139000/2013-32-9000 | SAE Journal Papers (26 papers)           |
| i_ |                       | ·                                        |

# **SETC2013 Session Timetable**

|                          | 9:00-10:30  |                                                                                                                                                    | Op                    | ening Ceremony & Keynote Sp      | eech                                           |                                                |
|--------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|------------------------------------------------|------------------------------------------------|
|                          | 10:30-11:00 | Coffee Break                                                                                                                                       |                       |                                  |                                                |                                                |
|                          |             | Alternative Fuels I                                                                                                                                | Engine Components I   | Engine Technology I              | Fuel Supply Systems I                          |                                                |
|                          | 11:00-12:00 | 20139038/2013-32-9038                                                                                                                              | 20139016/2013-32-9016 | 20139015/2013-32-9015            | 20139047/2013-32-9047                          |                                                |
|                          | 11100 12:00 | 20139059/2013-32-9059                                                                                                                              | 20139073/2013-32-9073 | 20139104/2013-32-9104            | 20139122/2013-32-9122                          |                                                |
|                          | 12:00-13:30 |                                                                                                                                                    |                       | Lunch                            |                                                |                                                |
|                          | 12.00 10.00 | Alternative Fuels II                                                                                                                               | Two Stroke Engine     | Engine Technology II             | Fuel Supply Systems II                         | Measurement & Simulation I                     |
| < th                     | 13:30-15:30 | 20139080/2013-32-9080                                                                                                                              | 20139036/2013-32-9036 | 20139032/2013-32-9032            | 20139128/2013-32-9128                          | 20139023/2013-32-9023                          |
| ctober 81<br>Tuesday     |             | 20139097/2013-32-9097                                                                                                                              | 20139078/2013-32-9078 | 20139060/2013-32-9060            | 20139126/2013-32-9126                          | 20139124/2013-32-9124                          |
| October 8th<br>Tuesday   |             | 20139115/2013-32-9115                                                                                                                              | 20139133/2013-32-9133 | 20139081/2013-32-9081            | 20139167/2013-32-9167                          | 20139125/2013-32-9125                          |
| 0                        |             | 20139131/2013-32-9131                                                                                                                              | 20139143/2013-32-9143 | 20139084/2013-32-9084            |                                                | 20139127/2013-32-9127                          |
|                          | 15:30-16:00 |                                                                                                                                                    |                       | reak, Brief Presentation of Post | ter Session                                    |                                                |
|                          | 10.00 10.00 | Materials I                                                                                                                                        | Diesel Engine         | Engine Technology III            | Hybrids, Electric Drives & Fuel Cells I        | Measurement & Simulation II                    |
|                          |             | 20139012/2013-32-9012                                                                                                                              | 20139021/2013-32-9021 | 20139105/2013-32-9105            | 20139006/2013-32-9006                          | 20139034/2013-32-9034                          |
|                          | 16:00-18:00 | 20139110/2013-32-9110                                                                                                                              | 20139022/2013-32-9022 | 20139160/2013-32-9160            | 20139009/2013-32-9009                          | 20139043/2013-32-9043                          |
|                          | 10.00 10.00 | 20139049/2013-32-9049                                                                                                                              | 20139103/2013-32-9103 | 20139161/2013-32-9161            | 20139018/2013-32-9018                          | 20139044/2013-32-9044                          |
|                          |             | 20139029/2013-32-9029                                                                                                                              | 20139112/2013-32-9112 | 20139114/2013-32-9114            | 20139016/2013-32-9015                          | 20139096/2013-32-9096                          |
|                          |             | Alternative Fuels III                                                                                                                              | Lubricants            | Engine Technology IV             | Collegiate Events                              | Measurement & Simulation III                   |
|                          |             | 20139174/2013-32-9174                                                                                                                              | Eubricants            | Engine recimology IV             | 20139100/2013-32-9100                          | 20139079/2013-32-9079                          |
|                          | 8:30-10:00  | 20139134/2013-32-9134                                                                                                                              | 20139033/2013-32-9033 | 20139169/2013-32-9169            |                                                |                                                |
|                          |             | 20139156/2013-32-9156                                                                                                                              | 20139063/2013-32-9063 | 20139189/2013-32-9189            | 20139118/2013-32-9118<br>20139176/2013-32-9176 | 20139162/2013-32-9162<br>20139157/2013-32-9157 |
|                          | 10:00-10:30 | 20139150/2013-32-9150                                                                                                                              |                       |                                  |                                                | 20139157/2013-32-9157                          |
|                          | 10.00-10.30 | Materials II         Engine Components II         Engine Controls I         Hybrids, Electric Drives & Fuel Cells II         Advanced Combustion I |                       |                                  |                                                |                                                |
|                          |             | 20139046/2013-32-9046                                                                                                                              | 20139102/2013-32-9102 | 20139041/2013-32-9041            | 20139132/2013-32-9132                          | 20139002/2013-32-9002                          |
| ay th                    | 10:30-12:00 | 20139082/2013-32-9082                                                                                                                              | 20139163/2013-32-9163 | 20139061/2013-32-9061            | 20139132/2013-32-9132                          | 20139030/2013-32-9030                          |
| er 9<br>esd              |             | 20139111/2013-32-9111                                                                                                                              | 20139068/2013-32-9068 | 20139037/2013-32-9037            | 20139072/2013-32-9072                          | 20139144/2013-32-9144                          |
| October 9th<br>Wednesday | 12:00-13:30 | 20133111/2013-32-3111                                                                                                                              | 20139000/2013-32-9000 | Lunch                            | 2013307272013-32-3072                          | 20133144/2013-32-3144                          |
| o≥                       | 12.00-13.30 | Emissions I         HCCI I         Engine Controls II         Hybrids, Electric Drives & Fuel Cells III         Advanced Combust                   |                       |                                  |                                                |                                                |
|                          |             | 20139058/2013-32-9058                                                                                                                              | 20139031/2013-32-9031 | 20139062/2013-32-9062            | 20139119/2013-32-9119                          | 20139116/2013-32-9116                          |
|                          | 13:30-15:30 | 20139050/2013-32-9050                                                                                                                              | 20139054/2013-32-9054 | 20139042/2013-32-9042            | 20139119/2013-32-9119                          | 20139117/2013-32-9117                          |
|                          | 13:30-15:30 | 20139052/2013-32-9052                                                                                                                              | 20139098/2013-32-9098 | 20139040/2013-32-9042            | 20139043/2013-32-9043                          | 20139123/2013-32-9123                          |
|                          |             | 20139055/2013-32-9055                                                                                                                              | 20139166/2013-32-9166 | 20139066/2013-32-9066            | 20139120/2013-32-9120                          | 20139123/2013-32-9123                          |
|                          | 15:30-15:45 | 20139035/2013-32-9035                                                                                                                              | 20139100/2013-32-9100 | Coffee Break                     | 20139007/2013-32-9007                          |                                                |
|                          | 15:45-18:05 |                                                                                                                                                    | Plenar                | y Session "Motorcycles in Asiar  | Region"                                        |                                                |
|                          | 13.43-10.03 | Emissions II                                                                                                                                       | HCCI II               | Engine Controls III              | Vehicle Dynamics & Safety I                    |                                                |
|                          |             | 20139057/2013-32-9057                                                                                                                              |                       | Engine controls in               | Venicie Dynamics & Garcty I                    |                                                |
|                          | 8:30-10:00  | 20139053/2013-32-9053                                                                                                                              | 20139070/2013-32-9070 | 20139065/2013-32-9065            | 20139026/2013-32-9026                          |                                                |
| ے                        |             | 20139064/2013-32-9064                                                                                                                              | 20139083/2013-32-9083 | 20139003/2013-32-9003            | 20139106/2013-32-9106                          |                                                |
| October 10th<br>Thursday | 10:00-10:30 |                                                                                                                                                    |                       | reak, Brief Presentation of Post |                                                |                                                |
| ctober 10t<br>Thursday   |             | Emissions III                                                                                                                                      | HCCI III              | Engine Controls IV               | Vehicle Dynamics & Safety II                   | NVH Technology                                 |
| oct                      |             | 20139091/2013-32-9091                                                                                                                              | 20139069/2013-32-9069 | 20139007/2013-32-9007            | 20139165/2013-32-9165                          | 20139001/2013-32-9001                          |
|                          | 10:30-12:00 | 20139130/2013-32-9130                                                                                                                              | 20139171/2013-32-9171 | 20139020/2013-32-9020            | 20139173/2013-32-9173                          | 20139148/2013-32-9148                          |
|                          |             | 20139150/2013-32-9150                                                                                                                              | 20139172/2013-32-9172 | 20139094/2013-32-9094            | 20139175/2013-32-9175                          | 20139164/2013-32-9164                          |
|                          | 12:00-14:00 | 000.00/2010-02-0100                                                                                                                                |                       | unch, Award & Closing Ceremo     |                                                |                                                |
|                          | 12.00-14.00 |                                                                                                                                                    | L                     |                                  | ,                                              |                                                |

| 1. Date                 | October 8 <sup>th</sup> Tuesday                                                  |
|-------------------------|----------------------------------------------------------------------------------|
| 2. Room.                | 201A                                                                             |
| 3. Time                 | 11:00 - 12:00                                                                    |
| 4. Session              | Alternative Fuels I                                                              |
| 5. Chair (Affiliation), | Hiroshi Omote (LEMA / YANMAR Co., Ltd.),                                         |
| co-chair (Affiliation)  | Markus Bertsch (MOT GmbH)                                                        |
|                         |                                                                                  |
| 6. Paper No.(JSAE/SAE)  | 20139038 / 2013-32-9038                                                          |
| 7. Paper title          | Diesel Fuel by Scrap-Tyre Thermal-Mechanical Pyrolysis                           |
| 8. Author (Affiliation) | Stefano Frigo, Roberto Gentili, Maurizia Seggiani, Monica Puccini (University of |
|                         | Pisa)                                                                            |

Current energy policies are encouraging the near-term use of fuels derived from civil and industrial waste residues, givingnew perspectives for their disposal. The possibility of using, in Diesel engines, a liquid fuel derived from waste synthetic polymeric matrices, such as scrap tyres, is evaluated in this paper. The fuel is obtained by means of an innovative technology based on a thermomechanical cracking process at moderate temperatures and pressures. A preliminary investigation was carried out on a 440 cm<sup>3</sup> single-cylinder Diesel engine for stationary applications using a commercial automotive Diesel fuel (UNI-EN 590:2010) and two mixtures of automotive Diesel fuel and tyre pyrolysis oil (TPO): the first one containing 20% TPO by volume, the other containing 40% TPO. With the first mixture, test bench results in terms of engine torque, power, specific fuel consumption and exhaust emissions are similar to the ones relative to automotive Diesel fuel, whereas the use of the mixture with 40% TPO leads to a general worsening in engine combustion features. Lubricant oil analysis, made at the end of the tests, proves a certain level of lube oil dilution due to fuel leaking into the oil sump. The toxicity levels of the exhaust particulate matter were analysed and result to be the same using automotive Diesel fuel and both the mixtures of Diesel fuel and TPO. No meaningful mechanical inconvenience occurred during the engine tests. Nevertheless, long-time reliability of the injection system, as well as of the entire engine, has to be verified.

| 6. Paper No.(JSAE/SAE)  | 20139059 / 2013-32-9059                                                    |
|-------------------------|----------------------------------------------------------------------------|
| 7. Paper title          | Study on Operation Characteristics of Gasohol Biofuel in Motorcycle Engine |
| 8. Author (Affiliation) | Yuh-Yih Wu, Jhih-Si Syu, Meng-Chieh Li (National Taipei University of      |
|                         | Technology), Zong-Da Lin (Industrial Technology Research Institute)        |
| 9. Abstract             |                                                                            |

The fossil fuel is consumed faster than last century. However, the fossil fuel reserves might be depleted due to its limited resources. Many researchers have started to seek alternative of fossil fuels for vehicles. Biofuels are regarded as a shorten-solution which synthesizes some additive fuel from bio-materials into fossil fuel to reduce fossil fuel consumption and can be applied on original fuel supplying system of vehicles that becomes another advantage. This paper focuses on studying the operation characteristics of using gasohol biofuel in a production motorcycle engine.

Engine experiments with various test conditions are designed to investigate the operation characteristics with different concentration of ethanol. The ethanol concentrations considered in this paper include 10%, 20%, 50%, 65%, and 80% by weight, which are then compared with the results from pure gasoline. The engine test conditions cover engine speed ranging from 2000 to 7000rpm and with different operation loads. Experimental results are analyzed on maximum engine torque, cylinder pressure, combustion rate, fuel consumption, exhaust temperature, and emissions. Consequently, experimental results show that the gasohol biofuel performs similar operation characteristics as compared with pure gasoline, which means that the gasohol biofuels can be employed as an alternative fuel for vehicles.

| 1. Date                 | October 8 <sup>th</sup> Tuesday                      |
|-------------------------|------------------------------------------------------|
| 2. Room.                | 201F                                                 |
| 3. Time                 | 11:00 - 12:00                                        |
| 4. Session              | Engine Components I                                  |
| 5. Chair (Affiliation), | Toshimi Kobayashi (Kawasaki Heavy Industries, Ltd.), |
| co-chair (Affiliation)  | Ken Fosaaen (Fosaaen Technologies, LLC.)             |

| 6. Paper No.(JSAE/SAE)  | 20139016 / 2013-32-9016                                                       |
|-------------------------|-------------------------------------------------------------------------------|
| 7. Paper title          | Design Methodology and Advantages of Centrifugal Type Decompression Device of |
|                         | Engine                                                                        |
| 8. Author (Affiliation) | Pochun Liu, Chih-Wen Yu and Yuwei Ning (Sanyang Industry Co., Ltd)            |
| 9. Abstract             |                                                                               |

With the development of high compression ratio or large-size engine, the cranking torque is getting higher, which causes the durability problem of starting system. Specifically, the starting motor and the one-way clutch are the most frequently wore parts. This kind of durability problem is also occurred in Stop and Go system, due to its frequently restarting process. Therefore, it is possible by using decompression device to reduce the cranking torque and to enhance the endurance capacity of the starting system. Furthermore, by reducing the cranking torque, engineers can miniaturize the starting motor and choose smaller capacity battery, and it also makes easier for kick start.

A 150cc scooter was chosen as the example. The design, analysis and measurement with centrifugal type decompression device (CTDD) were discussed in this study. The systematic design procedures and tools were also provided to develop the product quickly. Finally, this study developed a decompression device in which the ranking torque was successfully reduced 42% and the cranking noise was also highly suppressed.

| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                        | 20139073 / 2013-32-9073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. Paper title                                                                                                                                                                                                                                | Experimental Investigations of Forced Air Cooling for Continuously Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                               | Transmission (CVT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8. Author (Affiliation)                                                                                                                                                                                                                       | Abhishek Lakhanlal Vaishya, Sachin Phadnis (TVS Motor Company Limited)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9. Abstract                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ease of driving without ge<br>variable transmission com<br>protective chamber. This<br>temperature reached inside<br>is operated in hot environ<br>when the average operation<br>also deteriorates durability<br>it is necessary to limit the | n-geared (step less) transmission scooters are becoming more popular mainly due to<br>bar shift hassle. Typically these scooters transmit the power through a continuously<br>amonly called as CVT. The CVT of a scooter is generally air cooled and located in a<br>chamber reduces the heat transfers between the CVT and the atmosphere. The<br>e the chamber during the operation of the CVT is quite high, especially when the CVT<br>ment. This may reduce the service life of the drivebelt since it generally decreases<br>ing temperature increases. Along with V belt, high temperature inside CVT chamber<br>y of centrifugal clutch liner, bush, centrifugal rollers and other CVT parts. Therefore,<br>operating temperature of the CVT system.<br>research is to investigate temperature of CVT parts and optimize the air flow path and |
| air flow rate inside CVT of                                                                                                                                                                                                                   | chamber. Tests were carried out to measure the surface temperature distribution of<br>rature distribution inside CVT chamber under different vehicle test conditions. This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                               | neasure the temperature and identify the main causes affecting CVT cooling. Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

with improved CVT chamber cooling were also plotted.

| 1. Date                 | October 8 <sup>th</sup> Tuesday                                                  |
|-------------------------|----------------------------------------------------------------------------------|
| 2. Room.                | 102                                                                              |
| 3. Time                 | 11:00 - 12:00                                                                    |
| 4. Session              | Engine Technology I                                                              |
| 5. Chair (Affiliation), | Hideyuki Okumura (JMIA / Yamaha Motor Co., Ltd.),                                |
| co-chair (Affiliation)  | Nagesh Mavinahally (Mavin Tech, LLC.)                                            |
|                         |                                                                                  |
| 6. Paper No.(JSAE/SAE)  | 20139015 / 2013-32-9015                                                          |
| 7. Paper title          | High Performance Characteristics of a Motorcycle Powered by a Four-Stroke        |
|                         | Small 50cc-125cc Engine at the Expense of a Positive Displacement Air Compressor |
|                         | as a Supercharger                                                                |
| 8. Author (Affiliation) | Konstantin Evgenievich Starodetko , Simon Simand, Tcheslav Bronislavovich        |
|                         | Drobychevskj, Vladimir Jurievich Belyaev, Konstantin Nikolaevich Yurchuk         |
|                         | (International Academy of Information Technologies), Aliaksandr                  |
|                         | Aliaksandrovich Vitsiaz (Bereza Motor Rebuilt Plant), Dmitry Vasilievich         |
|                         | Kuzmenkov (Tascotrade Company)                                                   |

There are several problems with small motorcycle (moped, scooter) engines of 50cc-125cc displacement, and even up to 200cc for special applications. Lack of engine power and design complexity of a multi-valve cylinder head are the most important problems. Despite some isolated attempts and several patented works the small engines of 50cc to 350cc displacement undeservedly remain without adequate air charging means – neither superchargers nor turbochargers are offered to the market. This article presents a theoretical basis on how to improve high performance characteristics of a motorbike by supplying a working cylinder with additional compressed air under certain conditions. A few versions of a positive displacement air compressor (supercharger) have been developed, built, and used for engine boosting. Road tests of the pitbike motorcycle equipped with our small rotorvane compressor were performed. The results exceed expectations of the supercharger's performance and efficiency. Thus, to reach 50km/h for the motorcycle powered by the 50cc four-stroke engine equipped with the supercharger, 40% less time is needed than for the same motorcycle powered by a naturally aspirated...

| 20139104 / 2013-32-9104                                                                                     |
|-------------------------------------------------------------------------------------------------------------|
| Development of New Industrial Spark Ignited Bi-Fuel Engine                                                  |
| Koji Fujimura, Shinji Kishi, Takeshi Kawasaki, Takahiro Tokunaga<br>Kentaro Shiraishi (KUBOTA Corporation ) |
|                                                                                                             |

# 9. Abstract

Recently in North America, natural gas such as shale gas has gained much attention, and industrial SI engines are expected to fit in various fuels such as gasoline, LPG, and natural gas. Also tightened exhaust emissions regulations require industrial SI engines to adopt feedback fuel injection systems with three way catalysts. In response to these requirements of customers, we have developed a bi-fuel engine model which can be operated on any of gasoline, LPG, and natural gas. In this paper, approaches and technologies used for the development of the model are explained. On the gasoline version of the model, the locations of fuel injectors and the design of the inlet manifold with a surge tank were optimized by using Computational Fluid Dynamics (CFD). And we sought the optimum arrangement of an inlet manifold, a fuel delivery pipe, and plug-on type ignition coils. In addition, the variants which can be operated on LPG or natural gas are equipped with the gas delivery devices that are arranged within a small space. By these approaches, all of these variants have the profile which is interchangeable with the original diesel fueled model. The exhaust emission performance to satisfy the transient mode regulations and the optional small catalytic muffler which can be used in any desired orientations expand the ability of the model to fit within various OEM applications.

3

| 1. Date                 | October 8 <sup>th</sup> Tuesday                                           |
|-------------------------|---------------------------------------------------------------------------|
| 2. Room.                | 103                                                                       |
| 3. Time                 | 11:00 - 12:00                                                             |
| 4. Session              | Fuel Supply Systems I                                                     |
| 5. Chair (Affiliation), | Minoru Iida (Yamaha Motor Co., Ltd.),                                     |
| co-chair (Affiliation)  | Robert Kee (Queen's University of Belfast)                                |
|                         |                                                                           |
| 6. Paper No.(JSAE/SAE)  | 20139047 / 2013-32-9047                                                   |
| 7. Paper title          | Development of Plastic Fuel Hose with Pressure Pulsation Reduction        |
| 8. Author (Affiliation) | Kota Nakauchi, Atsushi Ito, Takeshi Ohara, Hideaki Kato, Hisayoshi Ogura, |
|                         | Shosuke Suzuki (Honda R&D Co., Ltd., Motorcycle R&D Center)               |

Recently, the electronic fuel injection systems have been widely applied to small motorcycles including scooters. In the high pressure fuel lines, plastic hoses have been increasingly used instead of conventional rubber hoses. As the plastic hose is less elastic than the rubber hose, the fuel pressure pulsates more in the plastic hose. To cope with this issue, we have conducted researches on how the fuel pressure pulsation in the plastic hose affects the accuracy of fuel injection. Keeping our eyes on the pulsation damping effects derived from the changes of volume due to the expansion and contraction of hose when the pressure changes, we have established the analysis method for optimization of the inner diameter and the thickness of the hose utilizing CAE analysis. The newly-developed plastic hose is applicable to motorcycles having a single cylinder 250 cm3 engine using an injector of a high static flow rate.

| 6. Paper No.(JSAE/SAE)  | 20139122 / 2013-32-9122                                                       |
|-------------------------|-------------------------------------------------------------------------------|
| 7. Paper title          | Evaluation of value proposition and interactive features for motorcycles with |
|                         | electronic fuel injection for Indian market                                   |
| 8. Author (Affiliation) | Pradeep R, Pramod R, Ajay Shetty, Prabhu Panduranga M. (Robert Bosch India    |
|                         | Limited)                                                                      |

# 9. Abstract

Growth and mobility expectation in India has increased competition in the Indian two wheeler industry. Value proposition targeting improved performance, fuel economy, user-friendly features are being seen as key differentiators. The expected introduction of EFI (Electronic Fuel Injection) leads to additional system cost which needs to be justified from tangible end-customer benefits. The previous SAE papers [1] [2] attempted to provide an insight into the carbureted engine vs. fuel injection systems from fuel efficiency, combustion quality perspective and also enumerated the benefit of fuel economy to end user. To increase the benefit to the end customers, the authors propose to provide insight into innovative system concepts with interactive features. The evaluation targets the commuter segment where the implementation and acceptance potential is high. The results thus derived on the motorcycle under consideration are promising and has high potential to meet the needs of the end user. Throttle enabled start, start-stop, bypass less throttle body, operating mode selection, "battery dead" ignition are a few of the features which can be implemented for a EFI bike increasing the value proposition and reducing the overall system cost for the OEM.



| 1. Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | October 8 <sup>th</sup> Tuesday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Room.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3. Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13:30-15:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4. Session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alternative Fuels II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5. Chair (Affiliation),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hiroshi Omote (LEMA / YANMAR Co., Ltd.),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| co-chair (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stefano Frigo (University of Pisa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20139080 / 2013-32-9080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Combustion Characteristics of a DI Diesel Engine with Short and Medium Chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Saturated Fatty Acid Methyl Esters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Eiji Kinoshita, Kazuyo Fushimi (Kagoshima University), Yasufumi Yoshimoto<br>(Niigata Institute of Technology)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ofsaturated fatty acid wir<br>saturated fatty acid methy<br>base fuel are tested using<br>methyl ester with a lowe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uel properties, combustion characteristics and exhaust emissions of the methyl esters<br>ch 6 to 10 carbons in the molecule chain. The fuels blend (50/50 mass%) of three<br>el esters (methyl caproate, methyl caprylate, methyl caprate); with methyl laurate as a<br>a DI diesel engine. From the experimental results, the blend of saturated fatty acid<br>r carbon number has a lower kinematic viscosity, pour point and smoke emission,<br>cion delay, the same as long chain saturated fatty acid methyl ester.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20139097 / 2013-32-9097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Effect of Butanol Isomer on Diesel Combustion Characteristics of Butanol/Gas Oil<br>Blend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Kazuyo Fushimi, Eiji Kinoshita (Kagoshima University), Yasufumi Yoshimoto<br>(Niigata Institute of Technology)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nvestigated using a DI diesel engine without modification of engine parameters. First,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| to understand the effect of<br>1-butanol which contents<br>although the ignition dela<br>operation is stable except                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | butanol content on the diesel combustion, engine test was carried out using blends of were 10 to 50 mass%. With increasing 1-butanol content, the Smoke emission reduces y gets longer and the HC and CO emissions increase especially at low load. The engine for full load with 1-butanol 50 mass% blend. From the above experimental results, atio is set to 40 mass%. In order of 1-butanol/gas oil, 2-butanol/gas oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| to understand the effect of<br>1-butanol which contents<br>although the ignition dela<br>operation is stable except                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | butanol content on the diesel combustion, engine test was carried out using blends of were 10 to 50 mass%. With increasing 1-butanol content, the Smoke emission reduces y gets longer and the HC and CO emissions increase especially at low load. The engine for full load with 1-butanol 50 mass% blend. From the above experimental results,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| to understand the effect of<br>1-butanol which contents<br>although the ignition dela<br>operation is stable except<br>butanol isomer blending r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | butanol content on the diesel combustion, engine test was carried out using blends of<br>were 10 to 50 mass%. With increasing 1-butanol content, the Smoke emission reduces<br>y gets longer and the HC and CO emissions increase especially at low load. The engine<br>for full load with 1-butanol 50 mass% blend. From the above experimental results,<br>atio is set to 40 mass%. In order of 1-butanol/gas oil, 2-butanol/gas oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| to understand the effect of<br>1-butanol which contents<br>although the ignition dela<br>operation is stable except<br>butanol isomer blending r<br>6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>butanol content on the diesel combustion, engine test was carried out using blends of were 10 to 50 mass%. With increasing 1-butanol content, the Smoke emission reduces y gets longer and the HC and CO emissions increase especially at low load. The engine for full load with 1-butanol 50 mass% blend. From the above experimental results, atio is set to 40 mass%. In order of 1-butanol/gas oil, 2-butanol/gas oil</li> <li>20139115 / 2013-32-9115</li> <li>Effects of Spark Ignition Timing on Exhaust Gas Component and Temperature with</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| to understand the effect of<br>1-butanol which contents<br>although the ignition dela<br>operation is stable except<br>butanol isomer blending r<br>6. Paper No.(JSAE/SAE)<br>7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>butanol content on the diesel combustion, engine test was carried out using blends of were 10 to 50 mass%. With increasing 1-butanol content, the Smoke emission reduces y gets longer and the HC and CO emissions increase especially at low load. The engine for full load with 1-butanol 50 mass% blend. From the above experimental results, atio is set to 40 mass%. In order of 1-butanol/gas oil, 2-butanol/gas oil</li> <li>20139115 / 2013-32-9115</li> <li>Effects of Spark Ignition Timing on Exhaust Gas Component and Temperature with Wood Biomass Gasifier</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| to understand the effect of<br>1-butanol which contents<br>although the ignition dela<br>operation is stable except<br>butanol isomer blending r<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Small wood biomass gasif<br>small spark ignition inter<br>heat flux will be controlle<br>biomass gasifier (downdra<br>temperature was 900deg-<br>compression ratio and w                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>butanol content on the diesel combustion, engine test was carried out using blends of were 10 to 50 mass%. With increasing 1-butanol content, the Smoke emission reduces y gets longer and the HC and CO emissions increase especially at low load. The engine for full load with 1-butanol 50 mass% blend. From the above experimental results, atio is set to 40 mass%. In order of 1-butanol/gas oil, 2-butanol/gas oil</li> <li>20139115 / 2013-32-9115</li> <li>Effects of Spark Ignition Timing on Exhaust Gas Component and Temperature with Wood Biomass Gasifier</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| to understand the effect of<br>1-butanol which contents<br>although the ignition dela<br>operation is stable except<br>butanol isomer blending r<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Small wood biomass gasif<br>small spark ignition inter<br>heat flux will be controlle<br>biomass gasifier (downdra<br>temperature was 900deg-<br>compression ratio and w<br>25deg-BTDC with almost                                                                                                                                                                                                                                                                                                                                            | <ul> <li><sup>2</sup> butanol content on the diesel combustion, engine test was carried out using blends of were 10 to 50 mass%. With increasing 1-butanol content, the Smoke emission reduces y gets longer and the HC and CO emissions increase especially at low load. The engine for full load with 1-butanol 50 mass% blend. From the above experimental results, atio is set to 40 mass%. In order of 1-butanol/gas oil, 2-butanol/gas oil</li> <li>20139115 / 2013-32-9115</li> <li>Effects of Spark Ignition Timing on Exhaust Gas Component and Temperature with Wood Biomass Gasifier</li> <li>Hiroshi Enomoto, Hirotaka Nozue, Noboru Hieda (Kanazawa University)</li> <li>Fer was developed and co-generation system supplying electric power and heat with nal combustion engine (SI-ICE) was investigated. The balance of electric power and ed with ignition timing and the exhaust gas components were discussed. The wood ft type) had 105mm in inner diameter and 1000mm in length and the reaction zone C at 68NL/min in intake air flow. The SI-ICE had 290cc in displacement and 8.4 in was driven at 1500rpm. The ignition angle was changed from 30deg-BTDC to same exhaust gas components. The exhaust gas temperature was from 520deg-C</li> </ul>                                                                                                                  |
| to understand the effect of<br>1-butanol which contents<br>although the ignition dela<br>operation is stable except<br>butanol isomer blending r<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Small wood biomass gasif<br>small spark ignition inter<br>heat flux will be controlle<br>biomass gasifier (downdra<br>temperature was 900deg-<br>compression ratio and w<br>25deg-BTDC with almost<br>6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                  | <ul> <li><sup>2</sup>butanol content on the diesel combustion, engine test was carried out using blends of were 10 to 50 mass%. With increasing 1-butanol content, the Smoke emission reduces y gets longer and the HC and CO emissions increase especially at low load. The engine for full load with 1-butanol 50 mass% blend. From the above experimental results, atio is set to 40 mass%. In order of 1-butanol/gas oil, 2-butanol/gas oil</li> <li>20139115 / 2013-32-9115</li> <li>Effects of Spark Ignition Timing on Exhaust Gas Component and Temperature with Wood Biomass Gasifier</li> <li>Hiroshi Enomoto, Hirotaka Nozue, Noboru Hieda (Kanazawa University)</li> <li>ier was developed and co-generation system supplying electric power and heat with nal combustion engine (SI-ICE) was investigated. The balance of electric power and ed with ignition timing and the exhaust gas components were discussed. The wood ft type) had 105mm in inner diameter and 1000mm in length and the reaction zone C at 68NL/min in intake air flow. The SI-ICE had 290cc in displacement and 8.4 in was driven at 1500rpm. The ignition angle was changed from 30deg-BTDC to same exhaust gas components. The exhaust gas temperature was from 520deg-C</li> <li>20139131 / 2013-32-9131</li> </ul>                                                                                  |
| to understand the effect of<br>1-butanol which contents<br>although the ignition dela<br>operation is stable except<br>butanol isomer blending r<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Small wood biomass gasif<br>small spark ignition inter<br>heat flux will be controlle<br>biomass gasifier (downdra<br>temperature was 900deg-<br>compression ratio and w<br>25deg-BTDC with almost                                                                                                                                                                                                                                                                                                                                            | <ul> <li><sup>2</sup> butanol content on the diesel combustion, engine test was carried out using blends of were 10 to 50 mass%. With increasing 1-butanol content, the Smoke emission reduces y gets longer and the HC and CO emissions increase especially at low load. The engine for full load with 1-butanol 50 mass% blend. From the above experimental results, atio is set to 40 mass%. In order of 1-butanol/gas oil, 2-butanol/gas oil</li> <li>20139115 / 2013-32-9115</li> <li>Effects of Spark Ignition Timing on Exhaust Gas Component and Temperature with Wood Biomass Gasifier</li> <li>Hiroshi Enomoto, Hirotaka Nozue, Noboru Hieda (Kanazawa University)</li> <li>Fer was developed and co-generation system supplying electric power and heat with nal combustion engine (SI-ICE) was investigated. The balance of electric power and ed with ignition timing and the exhaust gas components were discussed. The wood ft type) had 105mm in inner diameter and 1000mm in length and the reaction zone C at 68NL/min in intake air flow. The SI-ICE had 290cc in displacement and 8.4 in was driven at 1500rpm. The ignition angle was changed from 30deg-BTDC to same exhaust gas components. The exhaust gas temperature was from 520deg-C</li> </ul>                                                                                                                  |
| to understand the effect of<br>1-butanol which contents<br>although the ignition dela<br>operation is stable except<br>butanol isomer blending r<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Small wood biomass gasif<br>small spark ignition inter<br>heat flux will be controlle<br>biomass gasifier (downdra<br>temperature was 900deg-<br>compression ratio and w<br>25deg-BTDC with almost<br>6. Paper No.(JSAE/SAE)<br>7. Paper title                                                                                                                                                                                                                                                                                                | <ul> <li><sup>1</sup>butanol content on the diesel combustion, engine test was carried out using blends of were 10 to 50 mass%. With increasing 1-butanol content, the Smoke emission reduces gets longer and the HC and CO emissions increase especially at low load. The engine for full load with 1-butanol 50 mass% blend. From the above experimental results, atio is set to 40 mass%. In order of 1-butanol/gas oil, 2-butanol/gas oil</li> <li>20139115 / 2013-32-9115</li> <li>Effects of Spark Ignition Timing on Exhaust Gas Component and Temperature with Wood Biomass Gasifier</li> <li>Hiroshi Enomoto, Hirotaka Nozue, Noboru Hieda (Kanazawa University)</li> <li>ier was developed and co-generation system supplying electric power and heat with nal combustion engine (SI-ICE) was investigated. The balance of electric power and the type) had 105mm in inner diameter and 1000mm in length and the reaction zone C at 68NL/min in intake air flow. The SI-ICE had 290cc in displacement and 8.4 in vas driven at 1500rpm. The ignition angle was changed from 30deg-BTDC to same exhaust gas components. The exhaust gas temperature was from 520deg-C</li> <li>20139131 / 2013-32-9131</li> <li>Optimization of Waste Chicken Fat Pre-Treatment Process for Biodiesel Production Naresh Kumar Gurusala, Arul Mozhi Selvan V, Ajay Balan, Shreyas Athreya</li> </ul> |
| to understand the effect of<br>1-butanol which contents<br>although the ignition delay<br>operation is stable except<br>butanol isomer blending r<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Small wood biomass gasifis<br>small spark ignition inter<br>heat flux will be controlled<br>biomass gasifier (downdra<br>temperature was 900deg-<br>compression ratio and w<br>25deg-BTDC with almost<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Biodiesel production from<br>pollution by proper dispon<br>difficult, as it contains of<br>transesterification process<br>production using the pre-<br>as a catalyst, because it co<br>and takes longer reaction<br>varying from 0.5 to 2% by | <ul> <li><sup>1</sup>butanol content on the diesel combustion, engine test was carried out using blends of were 10 to 50 mass%. With increasing 1-butanol content, the Smoke emission reduces gets longer and the HC and CO emissions increase especially at low load. The engine for full load with 1-butanol 50 mass% blend. From the above experimental results, atio is set to 40 mass%. In order of 1-butanol/gas oil, 2-butanol/gas oil</li> <li>20139115 / 2013-32-9115</li> <li>Effects of Spark Ignition Timing on Exhaust Gas Component and Temperature with Wood Biomass Gasifier</li> <li>Hiroshi Enomoto, Hirotaka Nozue, Noboru Hieda (Kanazawa University)</li> <li>ier was developed and co-generation system supplying electric power and heat with nal combustion engine (SI-ICE) was investigated. The balance of electric power and the type) had 105mm in inner diameter and 1000mm in length and the reaction zone C at 68NL/min in intake air flow. The SI-ICE had 290cc in displacement and 8.4 in vas driven at 1500rpm. The ignition angle was changed from 30deg-BTDC to same exhaust gas components. The exhaust gas temperature was from 520deg-C</li> <li>20139131 / 2013-32-9131</li> <li>Optimization of Waste Chicken Fat Pre-Treatment Process for Biodiesel Production Naresh Kumar Gurusala, Arul Mozhi Selvan V, Ajay Balan, Shreyas Athreya</li> </ul> |

| 1. Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | October 9 <sup>th</sup> Wednesday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Room.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13:30 - 15:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4. Session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Two Stroke Engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5. Chair (Affiliation),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yuh Motoyama (Yamaha Motor Co., Ltd.),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| co-chair (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Brian Callahan (Achates Power & Basco)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C Denser No (ICAE/CAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20120026 / 2012-22-0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6. Paper No.(JSAE/SAE)<br>7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20139036 / 2013-32-9036<br>Development of Test Bench and Characterization of Performance in Small Internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7. raper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Combustion Engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Joseph K. Ausserer, Paul J. Litke (United States Air Force), Alexander Rowton,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marc Polanka (University of Dayton Research Institute), Alexander Rowton, Marc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Polanka (Air Force Institute of Technology), Keith Grinstead (Innovative Scientific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Solutions Incorporated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Small internal combustion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n engines (ICEs), (<7.5 kW), possess low thermal efficiencies due to high thermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to volume ratio increases beyond 1.5 cm²/cc, the increase in thermal losses leads to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ey and power. This effort describes the development and validation of a test stand to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | es of small ICEs, optimize combustion phasing, and eventually enable heavy fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | measures torque, rotational speed, brake power, intake air mass flow, up to 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | umbient, intake, cylinder head, fuel, and exhaust), 8 pressures (including ambient,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ttle position, and fuel and air mass flows. Intake air temperature and cylinder head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| temperature are controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and adjustable. Three geometrically similar engines with surface area to volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20139078 / 2013-32-9078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Engine Scavenging Tuning for In-Field Product Expectations of a 45cc Stratified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Two-Stroke Power Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M Bergman, R Sundkvist (Husqvarna AB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Because of todays new en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nissions legislation, a new 45cc Husqvarna trimmer/clearing saw power head was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | missions in a conventional two-stroke engine or a stratified scavenged engine, it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| important that the tuning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and basic scavenging characteristics of the standard engine are maintained. A dual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| charge intake system is ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cessary for the stratified engine but it also creates air fuel delivery issues compared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ine. With increasing trapping efficiency more spent gases mixes with the fresh charge,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| creating less favorable cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nbustion properties and thermal loading on the engine. On top of this the sequential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| creating less favorable con<br>stratified scavenging techn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nbustion properties and thermal loading on the engine. On top of this the sequential<br>nology introduces a spatial inhomogeneous mix problem between scavenging fresh air,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| creating less favorable con<br>stratified scavenging techn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nbustion properties and thermal loading on the engine. On top of this the sequential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| creating less favorable con<br>stratified scavenging techn<br>new mixture and spent ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nbustion properties and thermal loading on the engine. On top of this the sequential<br>nology introduces a spatial inhomogeneous mix problem between scavenging fresh air,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| creating less favorable con<br>stratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nbustion properties and thermal loading on the engine. On top of this the sequential<br>nology introduces a spatial inhomogeneous mix problem between scavenging fresh air,<br>ses. This all add sensitivity to long term stability due to deposits of carbon both in<br>20139133 / 2013-32-9133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| creating less favorable con<br>stratified scavenging techn<br>new mixture and spent ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nbustion properties and thermal loading on the engine. On top of this the sequential<br>nology introduces a spatial inhomogeneous mix problem between scavenging fresh air,<br>ses. This all add sensitivity to long term stability due to deposits of carbon both in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| creating less favorable con<br>stratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nbustion properties and thermal loading on the engine. On top of this the sequential<br>nology introduces a spatial inhomogeneous mix problem between scavenging fresh air,<br>ses. This all add sensitivity to long term stability due to deposits of carbon both in<br>20139133 / 2013-32-9133<br>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| creating less favorable constratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nbustion properties and thermal loading on the engine. On top of this the sequential<br>nology introduces a spatial inhomogeneous mix problem between scavenging fresh air,<br>ses. This all add sensitivity to long term stability due to deposits of carbon both in<br>20139133 / 2013-32-9133<br>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending<br>Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| creating less favorable constratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nbustion properties and thermal loading on the engine. On top of this the sequential<br>hology introduces a spatial inhomogeneous mix problem between scavenging fresh air,<br>ses. This all add sensitivity to long term stability due to deposits of carbon both in<br>20139133 / 2013-32-9133<br>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending<br>Application<br>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| creating less favorable cor<br>stratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an inc                                                                                                                                                                                                                                                                                                                                                                                                                         | nbustion properties and thermal loading on the engine. On top of this the sequential<br>nology introduces a spatial inhomogeneous mix problem between scavenging fresh air,<br>ses. This all add sensitivity to long term stability due to deposits of carbon both in<br>20139133 / 2013-32-9133<br>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending<br>Application<br>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of<br>Technology)<br>reasing approval of electrified mobility due to advantages like local zero emission and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| creating less favorable cor<br>stratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an inc<br>low noise. But range any                                                                                                                                                                                                                                                                                                                                                                                             | nbustion properties and thermal loading on the engine. On top of this the sequential<br>nology introduces a spatial inhomogeneous mix problem between scavenging fresh air,<br>ses. This all add sensitivity to long term stability due to deposits of carbon both in<br>20139133 / 2013-32-9133<br>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending<br>Application<br>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of<br>Technology)<br>reasing approval of electrified mobility due to advantages like local zero emission and<br>tiety, missing comprehensive availability and high costs significantly obstruct the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| creating less favorable constratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an inclow noise. But range and<br>acceptance and growth of                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>abustion properties and thermal loading on the engine. On top of this the sequential hology introduces a spatial inhomogeneous mix problem between scavenging fresh air, see. This all add sensitivity to long term stability due to deposits of carbon both in</li> <li>20139133 / 2013-32-9133</li> <li>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending Application</li> <li>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of Technology)</li> <li>reasing approval of electrified mobility due to advantages like local zero emission and tiety, missing comprehensive availability and high costs significantly obstruct the f electro mobility. Extended research on finding innovative solutions focus on the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>creating less favorable constratified scavenging techninew mixture and spent gate</li> <li>6. Paper No.(JSAE/SAE)</li> <li>7. Paper title</li> <li>8. Author (Affiliation)</li> <li>9. Abstract</li> <li>Global trends show an inclow noise. But range any acceptance and growth or elimination of the disadvariation</li> </ul>                                                                                                                                                                                                                                                                                          | <ul> <li>abustion properties and thermal loading on the engine. On top of this the sequential hology introduces a spatial inhomogeneous mix problem between scavenging fresh air, see. This all add sensitivity to long term stability due to deposits of carbon both in</li> <li>20139133 / 2013-32-9133</li> <li>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending Application</li> <li>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of Technology)</li> <li>reasing approval of electrified mobility due to advantages like local zero emission and tiety, missing comprehensive availability and high costs significantly obstruct the f electro mobility. Extended research on finding innovative solutions focus on the ntages of pure electric drivetrain systems. Therefore an ICE range extended electric</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| creating less favorable constratified scavenging techninew mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an inclow noise. But range any<br>acceptance and growth or<br>elimination of the disadvary<br>vehicle is a promising appresent                                                                                                                                                                                                                                                                                                        | hbustion properties and thermal loading on the engine. On top of this the sequential<br>hology introduces a spatial inhomogeneous mix problem between scavenging fresh air,<br>sees. This all add sensitivity to long term stability due to deposits of carbon both in<br>20139133 / 2013-32-9133<br>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending<br>Application<br>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of<br>Technology)<br>reasing approval of electrified mobility due to advantages like local zero emission and<br>tiety, missing comprehensive availability and high costs significantly obstruct the<br>f electro mobility. Extended research on finding innovative solutions focus on the<br>ntages of pure electric drivetrain systems. Therefore an ICE range extended electric<br>roach. Commonly, small-capacity gasoline engines with low cylinder numbers are used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| creating less favorable constratified scavenging techninew mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an inclow noise. But range and<br>acceptance and growth of<br>elimination of the disadvary<br>vehicle is a promising applied                                                                                                                                                                                                                                                                                                          | hbustion properties and thermal loading on the engine. On top of this the sequential<br>hology introduces a spatial inhomogeneous mix problem between scavenging fresh air,<br>see. This all add sensitivity to long term stability due to deposits of carbon both in<br>20139133 / 2013-32-9133<br>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending<br>Application<br>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of<br>Technology)<br>reasing approval of electrified mobility due to advantages like local zero emission and<br>they, missing comprehensive availability and high costs significantly obstruct the<br>f electro mobility. Extended research on finding innovative solutions focus on the<br>ntages of pure electric drivetrain systems. Therefore an ICE range extended electric<br>roach. Commonly, small-capacity gasoline engines with low cylinder numbers are used<br>rations. Targets are low emissions, efficient packaging, good NVH behaviour and low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>creating less favorable constratified scavenging techninew mixture and spent gates.</li> <li>6. Paper No.(JSAE/SAE)</li> <li>7. Paper title</li> <li>8. Author (Affiliation)</li> <li>9. Abstract</li> <li>Global trends show an incomparison of the disadvance and growth of elimination of the disadvance vehicle is a promising apprison range extending applicosts. In this paper the lay</li> </ul>                                                                                                                                                                                                                  | hbustion properties and thermal loading on the engine. On top of this the sequential<br>hology introduces a spatial inhomogeneous mix problem between scavenging fresh air,<br>see. This all add sensitivity to long term stability due to deposits of carbon both in<br>20139133 / 2013-32-9133<br>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending<br>Application<br>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of<br>Technology)<br>reasing approval of electrified mobility due to advantages like local zero emission and<br>ciety, missing comprehensive availability and high costs significantly obstruct the<br>f electro mobility. Extended research on finding innovative solutions focus on the<br>ntages of pure electric drivetrain systems. Therefore an ICE range extended electric<br>coach. Commonly, small-capacity gasoline engines with low cylinder numbers are used<br>cations. Targets are low emissions, efficient packaging, good NVH behaviour and low<br>rout and design of an innovative twostroke twin-cylinder engine with a capacity of one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>creating less favorable constratified scavenging techninew mixture and spent gates.</li> <li>6. Paper No.(JSAE/SAE)</li> <li>7. Paper title</li> <li>8. Author (Affiliation)</li> <li>9. Abstract</li> <li>Global trends show an incomparison of the disadvance and growth of elimination of the disadvance vehicle is a promising apprison range extending applicosts. In this paper the lay</li> </ul>                                                                                                                                                                                                                  | hbustion properties and thermal loading on the engine. On top of this the sequential<br>hology introduces a spatial inhomogeneous mix problem between scavenging fresh air,<br>see. This all add sensitivity to long term stability due to deposits of carbon both in<br>20139133 / 2013-32-9133<br>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending<br>Application<br>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of<br>Technology)<br>reasing approval of electrified mobility due to advantages like local zero emission and<br>they, missing comprehensive availability and high costs significantly obstruct the<br>f electro mobility. Extended research on finding innovative solutions focus on the<br>ntages of pure electric drivetrain systems. Therefore an ICE range extended electric<br>roach. Commonly, small-capacity gasoline engines with low cylinder numbers are used<br>rations. Targets are low emissions, efficient packaging, good NVH behaviour and low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| creating less favorable constratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an ince<br>low noise. But range and<br>acceptance and growth of<br>elimination of the disadva<br>vehicle is a promising appi-<br>for range extending applic<br>costs. In this paper the lay<br>litre is presented. Compar-<br>6. Paper No.(JSAE/SAE)                                                                                                                                                                               | <ul> <li>abustion properties and thermal loading on the engine. On top of this the sequential hology introduces a spatial inhomogeneous mix problem between scavenging fresh air, ses. This all add sensitivity to long term stability due to deposits of carbon both in</li> <li>20139133 / 2013-32-9133</li> <li>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending Application</li> <li>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of Technology)</li> <li>reasing approval of electrified mobility due to advantages like local zero emission and tiety, missing comprehensive availability and high costs significantly obstruct the f electro mobility. Extended research on finding innovative solutions focus on the ntages of pure electric drivetrain systems. Therefore an ICE range extended electric toach. Commonly, small-capacity gasoline engines with low cylinder numbers are used ations. Targets are low emissions, efficient packaging, good NVH behaviour and low out and design of an innovative twostroke twin-cylinder engine with a capacity of one ed to conventional single- or twin-cylinder four-stroke engines a two-stroke</li> <li>20139143 / 2013-32-9143</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| creating less favorable constratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an ince<br>low noise. But range and<br>acceptance and growth of<br>elimination of the disadva<br>vehicle is a promising apprise<br>for range extending applic<br>costs. In this paper the lay<br>litre is presented. Compare                                                                                                                                                                                                       | <ul> <li>abustion properties and thermal loading on the engine. On top of this the sequential hology introduces a spatial inhomogeneous mix problem between scavenging fresh air, see. This all add sensitivity to long term stability due to deposits of carbon both in</li> <li>20139133 / 2013-32-9133</li> <li>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending Application</li> <li>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of Technology)</li> <li>reasing approval of electrified mobility due to advantages like local zero emission and tiety, missing comprehensive availability and high costs significantly obstruct the f electro mobility. Extended research on finding innovative solutions focus on the ntages of pure electric drivetrain systems. Therefore an ICE range extended electric coach. Commonly, small-capacity gasoline engines with low cylinder numbers are used ations. Targets are low emissions, efficient packaging, good NVH behaviour and low rout and design of an innovative twostroke twin-cylinder engine with a capacity of one ed to conventional single- or twin-cylinder four-stroke engines a two-stroke</li> <li>20139143 / 2013-32-9143</li> <li>Is a High Pressure Direct Injection System a Solution to Reduce Exhaust Gas</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>creating less favorable corstratified scavenging techn new mixture and spent gate</li> <li>6. Paper No.(JSAE/SAE)</li> <li>7. Paper title</li> <li>8. Author (Affiliation)</li> <li>9. Abstract</li> <li>Global trends show an inclow noise. But range any acceptance and growth or elimination of the disadva vehicle is a promising applic costs. In this paper the lay litre is presented. Compar</li> <li>6. Paper No.(JSAE/SAE)</li> <li>7. Paper title</li> </ul>                                                                                                                                                   | <ul> <li>abustion properties and thermal loading on the engine. On top of this the sequential hology introduces a spatial inhomogeneous mix problem between scavenging fresh air, see. This all add sensitivity to long term stability due to deposits of carbon both in</li> <li>20139133 / 2013-32-9133</li> <li>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending Application</li> <li>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of Technology)</li> <li>reasing approval of electrified mobility due to advantages like local zero emission and tiety, missing comprehensive availability and high costs significantly obstruct the f electro mobility. Extended research on finding innovative solutions focus on the ntages of pure electric drivetrain systems. Therefore an ICE range extended electric coach. Commonly, small-capacity gasoline engines with low cylinder numbers are used ations. Targets are low emissions, efficient packaging, good NVH behaviour and low rout and design of an innovative twostroke twin-cylinder engine with a capacity of one ed to conventional single- or twin-cylinder four-stroke engines a two-stroke</li> <li>20139143 / 2013-32-9143</li> <li>Is a High Pressure Direct Injection System a Solution to Reduce Exhaust Gas Emissions in a Small Two-Stroke Engine?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| creating less favorable cor<br>stratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an inc<br>low noise. But range any<br>acceptance and growth or<br>elimination of the disadva<br>vehicle is a promising appli-<br>costs. In this paper the lay<br>litre is presented. Compar<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)                                                                                                                                                             | <ul> <li>abustion properties and thermal loading on the engine. On top of this the sequential hology introduces a spatial inhomogeneous mix problem between scavenging fresh air, see. This all add sensitivity to long term stability due to deposits of carbon both in</li> <li>20139133 / 2013-32-9133</li> <li>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending Application</li> <li>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of Technology)</li> <li>reasing approval of electrified mobility due to advantages like local zero emission and tiety, missing comprehensive availability and high costs significantly obstruct the f electro mobility. Extended research on finding innovative solutions focus on the ntages of pure electric drivetrain systems. Therefore an ICE range extended electric coach. Commonly, small-capacity gasoline engines with low cylinder numbers are used ations. Targets are low emissions, efficient packaging, good NVH behaviour and low rout and design of an innovative twostroke twin-cylinder engine with a capacity of one ed to conventional single- or twin-cylinder four-stroke engines a two-stroke</li> <li>20139143 / 2013-32-9143</li> <li>Is a High Pressure Direct Injection System a Solution to Reduce Exhaust Gas</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| creating less favorable cor<br>stratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an inc<br>low noise. But range any<br>acceptance and growth of<br>elimination of the disadva<br>vehicle is a promising appli-<br>for range extending appli-<br>costs. In this paper the lay<br>litre is presented. Compar<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract                                                                                                                | <ul> <li>abustion properties and thermal loading on the engine. On top of this the sequential hology introduces a spatial inhomogeneous mix problem between scavenging fresh air, see. This all add sensitivity to long term stability due to deposits of carbon both in</li> <li>20139133 / 2013-32-9133</li> <li>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending Application</li> <li>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of Technology)</li> <li>reasing approval of electrified mobility due to advantages like local zero emission and tiety, missing comprehensive availability and high costs significantly obstruct the f electro mobility. Extended research on finding innovative solutions focus on the ntages of pure electric drivetrain systems. Therefore an ICE range extended electric tooach. Commonly, small-capacity gasoline engines with low cylinder numbers are used ations. Targets are low emissions, efficient packaging, good NVH behaviour and low out and design of an innovative twostroke twin-cylinder engine with a capacity of one ed to conventional single- or twin-cylinder four-stroke engines a two-stroke</li> <li>20139143 / 2013-32-9143</li> <li>Is a High Pressure Direct Injection System a Solution to Reduce Exhaust Gas Emissions in a Small Two-Stroke Engine?</li> <li>Markus Bertsch, Kai W. Beck, Thomas Matousek, Ulrich Spicher (MOT GmbH)</li> </ul>                                                                                                                                                                                                                                                                                                                                                     |
| creating less favorable cor<br>stratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an inc<br>low noise. But range any<br>acceptance and growth of<br>elimination of the disadva<br>vehicle is a promising appli-<br>costs. In this paper the lay<br>litre is presented. Compar<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Small gasoline engines ar                                                                                                                 | <ul> <li>abustion properties and thermal loading on the engine. On top of this the sequential hology introduces a spatial inhomogeneous mix problem between scavenging fresh air, see. This all add sensitivity to long term stability due to deposits of carbon both in</li> <li>20139133 / 2013-32-9133</li> <li>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending Application <ul> <li>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of Technology)</li> </ul> </li> <li>reasing approval of electrified mobility due to advantages like local zero emission and tiety, missing comprehensive availability and high costs significantly obstruct the f electro mobility. Extended research on finding innovative solutions focus on the ntages of pure electric drivetrain systems. Therefore an ICE range extended electric toach. Commonly, small-capacity gasoline engines with low cylinder numbers are used ations. Targets are low emissions, efficient packaging, good NVH behaviour and low rout and design of an innovative twostroke twin-cylinder engine with a capacity of one ed to conventional single- or twin-cylinder four-stroke engines a two-stroke</li> <li>20139143 / 2013-32-9143</li> <li>Is a High Pressure Direct Injection System a Solution to Reduce Exhaust Gas Emissions in a Small Two-Stroke Engine?</li> <li>Markus Bertsch, Kai W. Beck, Thomas Matousek, Ulrich Spicher (MOT GmbH)</li> </ul>                                                                                                                                                                                                                                                                                                                                         |
| creating less favorable cor<br>stratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an inc<br>low noise. But range any<br>acceptance and growth or<br>elimination of the disadva<br>vehicle is a promising appir<br>for range extending applic<br>costs. In this paper the lay<br>litre is presented. Compar<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Small gasoline engines ar<br>low cost and compact des                                                        | <ul> <li>abustion properties and thermal loading on the engine. On top of this the sequential hology introduces a spatial inhomogeneous mix problem between scavenging fresh air, see. This all add sensitivity to long term stability due to deposits of carbon both in</li> <li>20139133 / 2013-32-9133</li> <li>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending Application <ul> <li>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of Technology)</li> </ul> </li> <li>reasing approval of electrified mobility due to advantages like local zero emission and tiety, missing comprehensive availability and high costs significantly obstruct the f electro mobility. Extended research on finding innovative solutions focus on the ntages of pure electric drivetrain systems. Therefore an ICE range extended electric toach. Commonly, small-capacity gasoline engines with low cylinder numbers are used ations. Targets are low emissions, efficient packaging, good NVH behaviour and low out and design of an innovative twostroke twin-cylinder engine with a capacity of one ed to conventional single- or twin-cylinder four-stroke engines a two-stroke</li> <li>20139143 / 2013-32-9143</li> <li>Is a High Pressure Direct Injection System a Solution to Reduce Exhaust Gas Emissions in a Small Two-Stroke Engine?</li> <li>Markus Bertsch, Kai W. Beck, Thomas Matousek, Ulrich Spicher (MOT GmbH)</li> </ul>                                                                                                                                                                                                                                                                                                                                          |
| creating less favorable cor<br>stratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an inclow noise. But range any<br>acceptance and growth or<br>elimination of the disadva<br>vehicle is a promising appin<br>for range extending applic<br>costs. In this paper the lay<br>litre is presented. Compar<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Small gasoline engines ar<br>low cost and compact des<br>factor regarding the upco                               | <ul> <li>abustion properties and thermal loading on the engine. On top of this the sequential hology introduces a spatial inhomogeneous mix problem between scavenging fresh air, ses. This all add sensitivity to long term stability due to deposits of carbon both in</li> <li>20139133 / 2013-32-9133</li> <li>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending Application <ul> <li>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of Technology)</li> </ul> </li> <li>reasing approval of electrified mobility due to advantages like local zero emission and tiety, missing comprehensive availability and high costs significantly obstruct the f electro mobility. Extended research on finding innovative solutions focus on the ntages of pure electric drivetrain systems. Therefore an ICE range extended electric oach. Commonly, small-capacity gasoline engines with low cylinder numbers are used ations. Targets are low emissions, efficient packaging, good NVH behaviour and low rout and design of an innovative twostroke twin-cylinder engine with a capacity of one ed to conventional single- or twin-cylinder four-stroke engines a two-stroke</li> <li>20139143 / 2013-32-9143</li> <li>Is a High Pressure Direct Injection System a Solution to Reduce Exhaust Gas Emissions in a Small Two-Stroke Engine?</li> <li>Markus Bertsch, Kai W. Beck, Thomas Matousek, Ulrich Spicher (MOT GmbH)</li> </ul>                                                                                                                                                                                                                                                                                                                                          |
| creating less favorable cor<br>stratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an inclow noise. But range and<br>acceptance and growth of<br>elimination of the disadva<br>vehicle is a promising applic<br>costs. In this paper the lay<br>litre is presented. Compar<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Small gasoline engines ar<br>low cost and compact des<br>factor regarding the upco<br>two-stroke engine causes a                              | <ul> <li>abustion properties and thermal loading on the engine. On top of this the sequential hology introduces a spatial inhomogeneous mix problem between scavenging fresh air, ses. This all add sensitivity to long term stability due to deposits of carbon both in</li> <li>20139133 / 2013-32-9133</li> <li>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending Application</li> <li>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of Technology)</li> <li>reasing approval of electrified mobility due to advantages like local zero emission and tiety, missing comprehensive availability and high costs significantly obstruct the f electro mobility. Extended research on finding innovative solutions focus on the ntages of pure electric drivetrain systems. Therefore an ICE range extended electric to coach. Commonly, small-capacity gasoline engines with low cylinder numbers are used ations. Targets are low emissions, efficient packaging, good NVH behaviour and low rout and design of an innovative twostroke twin-cylinder engine with a capacity of one ed to conventional single or twin-cylinder four-stroke engines a two-stroke</li> <li>20139143 / 2013-32-9143</li> <li>Is a High Pressure Direct Injection System a Solution to Reduce Exhaust Gas Emissions in a Small Two-Stroke Engine?</li> <li>Markus Bertsch, Kai W. Beck, Thomas Matousek, Ulrich Spicher (MOT GmbH)</li> <li>e used in motorcycles and handheld machinery, because of their high power density, ign. The reduction of hydrocarbon emissions and fuel consumption is an important ming emission standards and operational expenses. The scavenging process of the scavenging losses. A reduction in hydrocarbon emissions due to scavenging losses can</li> </ul> |
| creating less favorable cor<br>stratified scavenging techn<br>new mixture and spent gas<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Global trends show an inclow noise. But range and<br>acceptance and growth of<br>elimination of the disadva<br>vehicle is a promising applic<br>costs. In this paper the lay<br>litre is presented. Compar<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>Small gasoline engines ar<br>low cost and compact des<br>factor regarding the upco<br>two-stroke engine causes a<br>be achieved through inner | <ul> <li>abustion properties and thermal loading on the engine. On top of this the sequential hology introduces a spatial inhomogeneous mix problem between scavenging fresh air, ses. This all add sensitivity to long term stability due to deposits of carbon both in</li> <li>20139133 / 2013-32-9133</li> <li>An Innovative Two-Stroke Twin-Cylinder Engine Layout for Range Extending Application <ul> <li>A. Abis, F. Winkler, C. Schwab, R. Kirchberger, H. Eichlseder (Graz University of Technology)</li> </ul> </li> <li>reasing approval of electrified mobility due to advantages like local zero emission and tiety, missing comprehensive availability and high costs significantly obstruct the f electro mobility. Extended research on finding innovative solutions focus on the ntages of pure electric drivetrain systems. Therefore an ICE range extended electric oach. Commonly, small-capacity gasoline engines with low cylinder numbers are used ations. Targets are low emissions, efficient packaging, good NVH behaviour and low rout and design of an innovative twostroke twin-cylinder engine with a capacity of one ed to conventional single- or twin-cylinder four-stroke engines a two-stroke</li> <li>20139143 / 2013-32-9143</li> <li>Is a High Pressure Direct Injection System a Solution to Reduce Exhaust Gas Emissions in a Small Two-Stroke Engine?</li> <li>Markus Bertsch, Kai W. Beck, Thomas Matousek, Ulrich Spicher (MOT GmbH)</li> </ul>                                                                                                                                                                                                                                                                                                                                          |

| 1. Date                 | October 8 <sup>th</sup> Tuesday                                                 |
|-------------------------|---------------------------------------------------------------------------------|
| 2. Room.                | 201C                                                                            |
| 3. Time                 | 13:30 - 15:30                                                                   |
| 4. Session              | Engine Technology II                                                            |
| 5. Chair (Affiliation), | Hideyuki Okumura (JMIA/Yamaha Motor Co., Ltd.),                                 |
| co-chair (Affiliation)  | Nagesh Mavinahally (Mavin Tech, LLC.)                                           |
|                         |                                                                                 |
| 6. Paper No.(JSAE/SAE)  | 20139032 / 2013-32-9032                                                         |
| 7. Paper title          | Extension of Lean Burn Range by Intake Valve Offset                             |
| 8. Author (Affiliation) | Hideki Saito, Takamori Shirasuna, Tomokazu Nomura (Honda R&D Co., Ltd.)         |
| 9. Abstract             |                                                                                 |
| Using a 109.2 cm3 four- | stroke single-cylinder two-valve gasoline engine improvement of fuel economy by |

Using a 109.2 cm3, four-stroke, single-cylinder, two-valve gasoline engine, improvement of fuel economy by extension of lean burn range has been attempted with invented way to intensify tumble flow from a simple mechanical arrangement. With a part of the intake valve was jutted out beyond the perimeter of the cylinder bore, the masking effects from the valve recess on top of the cylinder sleeve created a strong tumble flow, which enabled lean burn at an air fuel ratio leaner than the conventional design by two points. The motorcycle equipped with this engine attained better fuel economy by 5.7% to the base model when measured in Indian Driving Cycle (IDC)...

| 6. Paper No.(JSAE/SAE)  | 20139060 / 2013-32-9060                                                                                 |
|-------------------------|---------------------------------------------------------------------------------------------------------|
| 7. Paper title          | An Investigation on Cranking Torque Reduction for Four-Stroke Motorcycle Engine                         |
| 8. Author (Affiliation) | Yong-Jing Zou, Yuh-Yih Wu, Yao-Chung Liang, Hsin-Hong Lin (National Taipei<br>University of Technology) |

# 9. Abstract

This study focuses on developing a cranking torque reduction strategy for a motorcycle with idling-stop system. At first, experiments are done to measure the electric current consumption of starting motor which is then converted into cranking torque by the motor torque constant. The experimental results also indicate that the piston position, after the engine is stopped, always remains at the bottom dead center of compression stroke. This will further increase the cranking torque for the next engine start due to static friction and compression pressure. This paper, therefore, proposes to retrofit the original generator of motorcycle as a motor/generator with the same operation power...

| 6. Paper No.(JSAE/SAE)  | 20139081 / 2013-32-9081                                                          |
|-------------------------|----------------------------------------------------------------------------------|
| 7. Paper title          | Numerical Investigations of Overexpanded Cycle and Exhaust Gas Recirculation for |
|                         | a Naturally Aspirated Lean Burn Engine                                           |
| 8. Author (Affiliation) | Denis Neher, Maurice Kettner, Fino Scholl (University of Applied Sciences        |
|                         | Karslruhe), Markus Klaissle, Danny Schwarz (SenerTec                             |
|                         | Kraft-Wärme-Energiesysteme GmbH), Blanca Giménez Olavarria (University of        |
|                         | Valladolid)                                                                      |

# 9. Abstract

A large number of small size gas-fired cogeneration engines operate with homogenous lean air-fuel mixture. It allows for engine operation at high efficiency and low NO<sub>x</sub> emissions. As a result of the rising amount of installed cogeneration units, however, a tightening of the governmental emission limits regarding NO<sub>x</sub> is expected. While engine operation with further diluted mixture reduces NO<sub>x</sub> emissions, it also decreases engine efficiency. This leads to lower mean effective pressure, in particular for naturally aspirated engines. In order to improve the trade-off between engine efficiency, NO<sub>x</sub> emissions and mean effective pressure, numerical investigations of an alternative combustion process for a series small cogeneration engine were carried out...

| 6. Paper No.(JSAE/SAE)  | 20139084 / 2013-32-9084                                                   |
|-------------------------|---------------------------------------------------------------------------|
| 7. Paper title          | Development of an Novel Non-eccentric Rotational Engine "Ishino Engine"   |
|                         | (Fundamental Configuration and Characteristics)                           |
| 8. Author (Affiliation) | Yojiro Ishino, Keisuke Teshima, Hiroyuki Fujii, Yusaku Yamamoto, Yu Saiki |
|                         | (Nagoya Institute of Technology)                                          |

#### 9. Abstract

A novel rotational internal combustion engine is invented and investigated. In this engine, no eccentric Rotational component is used, resulting in vibration-free operation. For this characteristics, this engine will be suitable for usage in silent environment, e.g. co-generation house plant, handyusage and so on. The engine mainly consists of a rotor casing and two types of rotor; cycloid rotor and trochoid rotor. The shape of the cycloid rotor is characterized by epicycloid surface and lobes, and the trochoid rotor also superior-epitrochoid surface and concaves. As mentioned above, fundamental process of intake, compression, ignition, expansion and exhaust for working gas is automatically performed by the constant speed rotation of both of rotors. In this paper, first, the typical configuration including two designing procedure of the rotors are described in detail. Next the cyclic behavior of the working process is explained. Furthermore the design drawing of the prototype engine is given...

| 1. Date                 | October 8 <sup>th</sup> Tuesday            |
|-------------------------|--------------------------------------------|
| 2. Room.                | 201D                                       |
| 3. Time                 | 13:30-15:00                                |
| 4. Session              | Fuel Supply Systems II                     |
| 5. Chair (Affiliation), | Minoru Iida (Yamaha Motor Co., Ltd.),      |
| co-chair (Affiliation)  | Robert Kee (Queen's University of Belfast) |
|                         |                                            |
| 6. Paper No.(JSAE/SAE)  | 20139128 / 2013-32-9128                    |

| 6. Faper NO. (JSAE/SAE) | 201391287 2013-32-9128                                                                                                                         |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. Paper title          | Evaluating the behavior of carbureted engines using a fast response fuel                                                                       |
|                         | consumption measurement device with minor impact on engine characteristics                                                                     |
| 8. Author (Affiliation) | Jürgen Tromayer, Gerd Neumann, Alexander Trattner, Roland Kirchberger (Graz<br>University of Technology), Hans van den Hoevel(AVL Deutschland) |

Meeting future legislative targets for SI engines by means of low cost technologies is a big challenge for engineers. Despite the use of simple and cost efficient components these engines have to fulfill customer requirements in terms of power and fuel economy, representing the most important selling arguments. Without the possibility of integrating modern technologies like fuel injection systems for mixture preparation instead of simple carburetors, it is very complex to find viable solutions that enable the achievement of these targets. A main key to improve emission behavior, fuel economy and performance on carbureted engines is to get an insight in the mixture preparation process, especially under transient conditions. Therefore, the Institute for Internal Combustion Engines and Thermodynamics of Graz University of Technology together with AVL Germany investigated possibilities to measure the fuel mass flow with a flexible, quick responding device that does not influence the carburetor itself. Comparisons of different fuel flow measurement tools on several engine applications were done to find out which one delivers the information required for advanced carburetor setup tasks in the best possible way. This should serve as a basis for future mixture preparation development on the test bench and especially for in-field optimization.

| 6. Paper No.(JSAE/SAE)  | 20139126 / 2013-32-9126                                                       |
|-------------------------|-------------------------------------------------------------------------------|
| 7. Paper title          | Spray Characteristics of Local-contact Microwave-heating Injector Fueled with |
|                         | Ethanol                                                                       |
| 8. Author (Affiliation) | Lukas Kano Mangalla, Hiroshi Enomoto (Kanazawa University)                    |
| 0.11.1.1                |                                                                               |

9. Abstract

A microwave-heating system is integrated in a port-injector to minimize the cold-start problems and exhaust emissions of engine. This paper report the experimental investigations of spray characteristics and numerical simulation of fuel temperature inside port-injector. Fuel flow inside port-injector is heated using microwave-heating and this system is called "local-contact microwave-heating injector" (LMI). LMI can be used to increase temperature of ethanol near boiling point (351.5K) before injected into room temperature. Injection pressure of fuel was operated constant at 0.3MPa. Characteristics of fuel spray were observed experimentally using high speed camera, CMOS camera and LDSA. Numerical simulation was conducted to verify the effect of local heating on spray distribution. 2-D geometry of injector with finer quadrilateral mesh (56,000 meshes) was solved numerically on pressure based solver in CFD simulation code. Conservation equations of mass, momentum and energy were modelled on time dependent using Pressure-Implicit with Splitting of Operation (PISO) algorithm. The result shows good agreement between numerical and experimental measurement of temperature distribution. An increasing of fuel temperature inside port injector is considerably improving Sauter Mean Diameter (SMD) of ethanol spray. Pre-heating fuel system by LMI can improve spray quality ...

This presentation was moved to the last of "Advanced Combustion II" session, October 9th, 201E room.

| 6. Paper No.(JSAE/SAE)  | 20139167 / 2013-32-9167                                                |
|-------------------------|------------------------------------------------------------------------|
| 7. Paper title          | Measurement of fuel liquid film under the different injection pressure |
| 8. Author (Affiliation) | Keiji Muramatsu, Kenji Yamamoto, Naoki Jinno, Kenjiro Nakama (SUZUKI   |
|                         | MOTOR CORPORATION), Shinya Okamoto, Tsuneaki Ishima (Gunma University) |

#### 9. Abstract

The purpose of this study was to measure the distribution and volume of liquid film adhering to the walls after the injection of fuel by an injector of a port-injection engine using the laser induced fluorescence (LIF) method while changing the fuel pressure and the angle of injection, and to consider how adhesion can be reduced in order to decrease the exhaust emission of gasoline engine. Using a high-speed camera, we filmed the adhesion and evaporation of liquid film in time series. Perylene, used here as a fluorescence dye, was blended with a fuel comprising toluene and n-heptane, and the mixture was injected onto a solid surface using a port-injection injector. UVLED with a maximum output wavelength of 375 nm was used as the exciting light. To more accurately measure the volume of fuel adhesion, it was necessary to correct the unevenness of the light source. For this purpose, we filmed the unevenness of the light source using a fluorescent plate, and using the image as the reference, corrected the images of liquid film adhesion. Through these methods, we evaluated the behavior of liquid film under different injection pressures and injection angles. The results showed that by increasing the fuel pressure, we can reduce the liquid film adhesion and that the smaller the angle of injection...

| 2. Room.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | October 8 <sup>th</sup> Tuesday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3. Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13:30 - 15:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4. Session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measurement & Simulation I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5. Chair (Affiliation),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tadao Okazaki (LEMA / Kubota Corporation),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| co-chair (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stephan Schmidt (Graz University of Technology)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20139023 / 2013-32-9023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A Comparative Study on Map Based and Closed Loop Simulation Model of Coolant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Circuit for a Two Wheeler Liquid Cooled Engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N. Karthikeyan, Anish Gokhale (Mahindra 2 Wheelers Limited)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| . Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| cooled under vehicle opera<br>In designing process, sim<br>developed within the cool<br>system depends on the flor<br>of a backward curved imp<br>such as pressure drop, flor                                                                                                                                                                                                                                                                                                                                             | a vehicle cooling system is to ensure that the components of the engine are adequately<br>ating conditions. Engine life and effectiveness can be improved with effective cooling<br>pulation plays a vital role. A clear understanding of the coolant flow and pressure<br>ing system is important in designing the coolant circuit. The efficiency of the cooling<br>w delivered by the impeller. The work aims at the study of performance characteristic<br>eller in a two wheeler cooling system. The objective is to compare the operating points<br>w delivered and power consumed from mapped Computational Fluid Dynamics (CFD<br>o CFD simulation. Moving Reference Frame (MRF) model was used to simulate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| simulation and closed loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20139124 / 2013-32-9124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Real World Operation of a Standard Lawn Mower Engine from a Scientific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Perspective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hermann Edtmayer, Alexander Trattner, Stephan Schmidt, Roland Kirchberger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Graz University of Technology) Jakob Trentini, Johann Weiglhofer (Viking GmbH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| . Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | esearch project on a spark ignition engine used in non-road applications. The aim is t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| standard walk-behind law<br>and the engine variables of<br>two different blade types<br>test bench in stationary an                                                                                                                                                                                                                                                                                                                                                                                                       | ation as basis for comparison. Furthermore to identify possible improvement potentia<br>efficiency or exhaust and noise emissions. The study is carried out in two steps. First a<br>on mower is equipped with measuring instrumentation for recording the cutting forces<br>luring real world operation. The tests are carried out on three different lawn types and<br>are investigated. Consequently, in a second step the engine is analysed on the engine<br>and transient operating mode. A complete engine mapping is done regarding all relevan<br>the outdoor tests, fuel consumption and engine out emissions are measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| standard walk-behind law<br>and the engine variables of<br>two different blade types<br>test bench in stationary an<br>variables. Additionally to<br>6. Paper No.(JSAE/SAE)<br>7. Paper title                                                                                                                                                                                                                                                                                                                             | efficiency or exhaust and noise emissions. The study is carried out in two steps. First a<br>rn mower is equipped with measuring instrumentation for recording the cutting forces<br>luring real world operation. The tests are carried out on three different lawn types and<br>are investigated. Consequently, in a second step the engine is analysed on the engine<br>d transient operating mode. A complete engine mapping is done regarding all relevan<br>the outdoor tests, fuel consumption and engine out emissions are measured<br>20139125 / 2013-32-9125<br>Start/Stop Strategies for Two-Wheelers in the Emerging Markets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| standard walk-behind law<br>and the engine variables of<br>two different blade types<br>test bench in stationary an<br>variables. Additionally to<br>6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                               | efficiency or exhaust and noise emissions. The study is carried out in two steps. First as<br>an mower is equipped with measuring instrumentation for recording the cutting forces<br>luring real world operation. The tests are carried out on three different lawn types and<br>are investigated. Consequently, in a second step the engine is analysed on the engine<br>and transient operating mode. A complete engine mapping is done regarding all relevan<br>the outdoor tests, fuel consumption and engine out emissions are measured<br>20139125 / 2013-32-9125<br>Start/Stop Strategies for Two-Wheelers in the Emerging Markets<br>Bernd Heinzmann, Simon Scholz (Robert Bosch GmbH) Pramod R, Prashanth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| standard walk-behind law<br>and the engine variables of<br>two different blade types<br>test bench in stationary an<br>variables. Additionally to<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>. Abstract                                                                                                                                                                                                                                                                                    | efficiency or exhaust and noise emissions. The study is carried out in two steps. First as<br>an mower is equipped with measuring instrumentation for recording the cutting forced<br>luring real world operation. The tests are carried out on three different lawn types and<br>are investigated. Consequently, in a second step the engine is analysed on the engine<br>d transient operating mode. A complete engine mapping is done regarding all relevan<br>the outdoor tests, fuel consumption and engine out emissions are measured<br>20139125 / 2013-32-9125<br>Start/Stop Strategies for Two-Wheelers in the Emerging Markets<br>Bernd Heinzmann, Simon Scholz (Robert Bosch GmbH) Pramod R, Prashanth<br>Anantha (Bosch India Ltd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| standard walk-behind law<br>and the engine variables of<br>two different blade types<br>test bench in stationary an<br>variables. Additionally to<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>. Abstract<br>Fuel economy of two-whe<br>within the emerging mar<br>concern about vehicle en<br>relatively expensive engir<br>carburettor counterpart. T<br>subsequent numerical sir<br>provides a basis to establ                                                                            | efficiency or exhaust and noise emissions. The study is carried out in two steps. First as<br>an mower is equipped with measuring instrumentation for recording the cutting forces<br>luring real world operation. The tests are carried out on three different lawn types and<br>are investigated. Consequently, in a second step the engine is analysed on the engine<br>and transient operating mode. A complete engine mapping is done regarding all relevan<br>the outdoor tests, fuel consumption and engine out emissions are measured<br>20139125 / 2013-32-9125<br>Start/Stop Strategies for Two-Wheelers in the Emerging Markets<br>Bernd Heinzmann, Simon Scholz (Robert Bosch GmbH) Pramod R, Prashanth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| standard walk-behind law<br>and the engine variables of<br>two different blade types<br>test bench in stationary an<br>variables. Additionally to<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>. Abstract<br>Fuel economy of two-whe<br>within the emerging mar<br>concern about vehicle en<br>relatively expensive engir<br>carburettor counterpart. T<br>subsequent numerical sir<br>provides a basis to establ<br>more flexibility to the eng                                             | efficiency or exhaust and noise emissions. The study is carried out in two steps. First as an mower is equipped with measuring instrumentation for recording the cutting forces the mower is equipped with measuring instrumentation for recording the cutting forces the investigated. Consequently, in a second step the engine is analysed on the engine in the transient operating mode. A complete engine mapping is done regarding all relevant the outdoor tests, fuel consumption and engine out emissions are measured  20139125 / 2013-32-9125  Start/Stop Strategies for Two-Wheelers in the Emerging Markets Bernd Heinzmann, Simon Scholz (Robert Bosch GmbH) Pramod R, Prashanth Anantha (Bosch India Ltd)  elers is an important factor influencing the purchasing psychology of the consume kets. Additionally, air pollution being a major environmental topic, there is a rising insistons, especially in the big cities and their metropolitan areas. Potentially, the management systems are providing more features and value in comparison to the fuel consumption benefit for the electronic (Port) Fuel Injection which is the fuel consumption benefit for the electronic injection systems. In order to additional fuel economy benefit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| standard walk-behind law<br>and the engine variables of<br>two different blade types<br>test bench in stationary an<br>variables. Additionally to<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>. Abstract<br>Fuel economy of two-whe<br>within the emerging mar<br>concern about vehicle en<br>relatively expensive engir<br>carburettor counterpart. T<br>subsequent numerical sir<br>provides a basis to establ<br>more flexibility to the eng<br>6. Paper No.(JSAE/SAE)                   | efficiency or exhaust and noise emissions. The study is carried out in two steps. First are mower is equipped with measuring instrumentation for recording the cutting force turing real world operation. The tests are carried out on three different lawn types and are investigated. Consequently, in a second step the engine is analysed on the engine d transient operating mode. A complete engine mapping is done regarding all relevant the outdoor tests, fuel consumption and engine out emissions are measured  20139125 / 2013-32-9125  Start/Stop Strategies for Two-Wheelers in the Emerging Markets Bernd Heinzmann, Simon Scholz (Robert Bosch GmbH) Pramod R, Prashanth Anantha (Bosch India Ltd)  elers is an important factor influencing the purchasing psychology of the consume kets. Additionally, air pollution being a major environmental topic, there is a rising insisions, especially in the big cities and their metropolitan areas. Potentially, the management systems are providing more features and value in comparison to the the combustion system analysis is carried out on a 125 cm3 motorcycle engine and the induction comparing the carburettor and the Electronic (Port) Fuel Injection which is the fuel consumption benefit for the electronic injection systems. In order to additional fuel economy benefit 20139127 / 2013-32-9127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| standard walk-behind law<br>and the engine variables of<br>two different blade types<br>test bench in stationary an<br>variables. Additionally to<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>. Abstract<br>Fuel economy of two-whe<br>within the emerging mar<br>concern about vehicle en<br>relatively expensive engir<br>carburettor counterpart. T<br>subsequent numerical sir<br>provides a basis to establ<br>more flexibility to the eng                                             | efficiency or exhaust and noise emissions. The study is carried out in two steps. First as an mower is equipped with measuring instrumentation for recording the cutting forces the mower is equipped with measuring instrumentation for recording the cutting forces the investigated. Consequently, in a second step the engine is analysed on the engine are investigated. Consequently, in a second step the engine is analysed on the engine d transient operating mode. A complete engine mapping is done regarding all relevan the outdoor tests, fuel consumption and engine out emissions are measured  20139125 / 2013-32-9125  Start/Stop Strategies for Two-Wheelers in the Emerging Markets Bernd Heinzmann, Simon Scholz (Robert Bosch GmbH) Pramod R, Prashanth Anantha (Bosch India Ltd)  elers is an important factor influencing the purchasing psychology of the consume kets. Additionally, air pollution being a major environmental topic, there is a rising insisions, especially in the big cities and their metropolitan areas. Potentially, the management systems are providing more features and value in comparison to the full consumption benefit for the electronic (Port) Fuel Injection which is the fuel consumption benefit for the electronic injection systems. In order to additional fuel economy benefit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| standard walk-behind law<br>and the engine variables of<br>two different blade types<br>test bench in stationary an<br>variables. Additionally to<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>. Abstract<br>Fuel economy of two-whe<br>within the emerging mar<br>concern about vehicle en<br>relatively expensive engir<br>carburettor counterpart. T<br>subsequent numerical sir<br>provides a basis to establ<br>more flexibility to the eng<br>6. Paper No.(JSAE/SAE)                   | <ul> <li>afficiency or exhaust and noise emissions. The study is carried out in two steps. First are mower is equipped with measuring instrumentation for recording the cutting forces the investigated. Consequently, in a second step the engine is analysed on the engine of transient operating mode. A complete engine mapping is done regarding all relevant the outdoor tests, fuel consumption and engine out emissions are measured</li> <li>20139125 / 2013-32-9125</li> <li>Start/Stop Strategies for Two-Wheelers in the Emerging Markets</li> <li>Bernd Heinzmann, Simon Scholz (Robert Bosch GmbH) Pramod R, Prashanth Anantha (Bosch India Ltd)</li> <li>elers is an important factor influencing the purchasing psychology of the consume kets. Additionally, air pollution being a major environmental topic, there is a rising hissions, especially in the big cities and their metropolitan areas. Potentially, the management systems are providing more features and value in comparison to the "he combustion system analysis is carried out on a 125 cm3 motorcycle engine and the nulation comparing the carburettor and the Electronic (Port) Fuel Injection whiel is the fuel consumption benefit for the electronic injection systems. In order to additional fuel economy benefit</li> <li>20139127 / 2013-32-9127</li> <li>Development of a Thermal Model within a Complete Vehicle Simulation for Motorcycles and Powersport Applications</li> <li>P. Rieger, J. Girstmair, St. Schmidt, R. Almbauer, R. Kirchberger (Graz University or the step is a complete to the step is a complete to a complete to a complete to a comparise or the step is a complete to a comp</li></ul> |
| standard walk-behind law<br>and the engine variables of<br>two different blade types<br>test bench in stationary an<br>variables. Additionally to<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>. Abstract<br>Fuel economy of two-whe<br>within the emerging mar<br>concern about vehicle en<br>relatively expensive engin<br>carburettor counterpart. 7<br>subsequent numerical sin<br>provides a basis to establ<br>more flexibility to the eng<br>6. Paper No.(JSAE/SAE)<br>7. Paper title | efficiency or exhaust and noise emissions. The study is carried out in two steps. First a<br>mower is equipped with measuring instrumentation for recording the cutting force-<br>laring real world operation. The tests are carried out on three different lawn types and<br>are investigated. Consequently, in a second step the engine is analysed on the engine<br>at transient operating mode. A complete engine mapping is done regarding all relevan<br>the outdoor tests, fuel consumption and engine out emissions are measured<br>20139125 / 2013-32-9125<br>Start/Stop Strategies for Two-Wheelers in the Emerging Markets<br>Bernd Heinzmann, Simon Scholz (Robert Bosch GmbH) Pramod R, Prashanth<br>Anantha (Bosch India Ltd)<br>elers is an important factor influencing the purchasing psychology of the consume<br>kets. Additionally, air pollution being a major environmental topic, there is a rising<br>hissions, especially in the big cities and their metropolitan areas. Potentially, the<br>management systems are providing more features and value in comparison to the<br>"the combustion system analysis is carried out on a 125 cm3 motorcycle engine and the<br>nulation comparing the carburettor and the Electronic (Port) Fuel Injection which<br>ish the fuel consumption benefit for the electronic injection systems. In order to addition<br>in management systems and provide additional fuel economy benefit<br>20139127 / 2013-32-9127<br>Development of a Thermal Model within a Complete Vehicle Simulation for<br>Motorcycles and Powersport Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 2. Room.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>2. 10</b> 00111.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3. Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16:00 - 18:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4. Session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Materials I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5. Chair (Affiliation),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hirotaka Kurita (Yamaha Motor Co., Ltd.),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| co-chair (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ken Fosaaen (Fosaaen Technologies, LLC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20139012 / 2013-32-9012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High Performance Polymers for Small Engine Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8. Author (Affiliation)<br>Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stephen Gurchinoff, Duane Fish, Brian Stern (Solvay Specialty Polymers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| chan more commonly known<br>automotive industry in a m<br>some benefits in certain of<br>history and continues to ex-<br>areas where alcohol is pre-<br>to serve as a low cost so<br>constructions. Ethylene g<br>properties of HPP's. Higher<br>3. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>Abstract<br>Long term soaking creep in                                                                                                                                                                | rs (HPPs) consist of a group of materials that perform in more demanding application<br>own plastic materials. These materials have been used to replace metals in the<br>number of applications. HPP's offer specific strengths in line with cast metals and offer<br>chemical environments over metals. The use of these materials in fuels has a low<br>spand as the capabilities become better understood, HPP's are of particular interest is<br>sent in fuel mixtures and causes corrosion on metals. HPP's have also been developed<br>lutions to fuel permeation in fuel tanks by using two or three layer blow molde<br>glycol, oils, and other automotive fluids also have little effect on the mechanica<br>er temperature capable HPP's (up to 300° C) exhibit outstanding friction and<br>20139110 / 2013-32-9110<br>Creep Resistance of 2024 Aluminum Alloy<br>Le Min Wang, Chih-Jrn Tsai (National Defense University)<br>cupture tests of a 2024 aluminum alloy in the T4 condition were performed at 100 °<br>es ranged from 235 MPa to 370 MPa. It appears that the longer creep life can be                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eficial effect of underageing resulting in the GPB zones being retained in the matri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| condition of 325 MPa at<br>developed very fine preci<br>precipitates lead to sign<br>comperature, creep ruptur                                                                                                                                                                                                                                                                                                                                                                                                                | d additional dynamic precipitation of S' precipitates during testing; especially at the 100 °C, the alloy exhibits longer creep life of at least 14,604 h due to most full ipitates dispersion. When creep test at higher temperature (130°C), the grown in ificant reduction of creep rupture life. The correlation of applied stress, cree test ime, and microstructure evolution were discussed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| condition of 325 MPa at<br>developed very fine preci<br>precipitates lead to sign<br>comperature, creep ruptur<br>3. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                      | d additional dynamic precipitation of S' precipitates during testing; especially at the 100 °C, the alloy exhibits longer creep life of at least 14,604 h due to most full ipitates dispersion. When creep test at higher temperature (130°C), the grown in ificant reduction of creep rupture life. The correlation of applied stress, cree te time, and microstructure evolution were discussed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| condition of 325 MPa at<br>developed very fine preci<br>precipitates lead to sign<br>temperature, creep ruptur<br>6. Paper No.(JSAE/SAE)<br>7. Paper title                                                                                                                                                                                                                                                                                                                                                                    | d additional dynamic precipitation of S' precipitates during testing; especially at the 100 °C, the alloy exhibits longer creep life of at least 14,604 h due to most full pitates dispersion. When creep test at higher temperature (130°C), the grown in ificant reduction of creep rupture life. The correlation of applied stress, cree test et me, and microstructure evolution were discussed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| condition of 325 MPa at<br>developed very fine preci<br>precipitates lead to sign<br>temperature, creep ruptur<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>. Abstract                                                                                                                                                                                                                                                                                                                           | d additional dynamic precipitation of S' precipitates during testing; especially at th<br>100 °C, the alloy exhibits longer creep life of at least 14,604 h due to most full<br>ipitates dispersion. When creep test at higher temperature (130°C), the grown<br>ificant reduction of creep rupture life. The correlation of applied stress, cree<br>e time, and microstructure evolution were discussed.<br>20139049 / 2013-32-9049<br>Corrosion resistance improvement technology of anodic oxide films on aluminum<br>alloy that uses a lithium hydroxide solution<br>Masahiro Fujita, Hiroomi Tanaka, Hitoshi Muramatsu (SUZUKI MOTOR<br>CORPORATION), Sachiko Ono, Hidetaka Asoh (Kogakuin University)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| condition of 325 MPa at<br>developed very fine preci-<br>precipitates lead to sign<br>temperature, creep ruptur<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>Abstract<br>The anodic oxide films are<br>of engines and car bodies.<br>improve the corrosion resi-<br>water or solution that add<br>is large because of long sea<br>In this study, the authors<br>solution to solve above pr<br>(LiH(AlO2)2·5H2O). This                                                                            | d additional dynamic precipitation of S' precipitates during testing; especially at th<br>100 °C, the alloy exhibits longer creep life of at least 14,604 h due to most full<br>pitates dispersion. When creep test at higher temperature (130°C), the grown<br>ificant reduction of creep rupture life. The correlation of applied stress, cree<br>e time, and microstructure evolution were discussed.<br>20139049 / 2013-32-9049<br>Corrosion resistance improvement technology of anodic oxide films on aluminum<br>alloy that uses a lithium hydroxide solution<br>Masahiro Fujita, Hiroomi Tanaka, Hitoshi Muramatsu (SUZUKI MOTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| condition of 325 MPa at<br>developed very fine preci-<br>precipitates lead to sign<br>temperature, creep ruptur<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>Abstract<br>The anodic oxide films are<br>of engines and car bodies.<br>improve the corrosion resi-<br>water or solution that add<br>is large because of long sea<br>In this study, the authors<br>solution to solve above pr<br>(LiH(AlO2)2·5H2O). This<br>sealing time was reduced to<br>6. Paper No.(JSAE/SAE)                   | d additional dynamic precipitation of S' precipitates during testing; especially at the 100 °C, the alloy exhibits longer creep life of at least 14,604 h due to most full ipitates dispersion. When creep test at higher temperature (130°C), the grown in ificant reduction of creep rupture life. The correlation of applied stress, cree terme, and microstructure evolution were discussed. 20139049 / 2013-32-9049 Corrosion resistance improvement technology of anodic oxide films on aluminum alloy that uses a lithium hydroxide solution Masahiro Fujita, Hiroomi Tanaka, Hitoshi Muramatsu (SUZUKI MOTOR CORPORATION), Sachiko Ono, Hidetaka Asoh (Kogakuin University) formed to improve the corrosion resistance on aluminum alloy that used as the par Because these films are porous structure, it is necessary to seal the pores to further istance. The pores are sealed with hydrated alumina by treating the films in boiline esting additives. These hydration sealing has a problem that energy consumptionaling time and high temperature of solution. have developed a new sealing treatment (Lithium sealing) using a lithium hydroxic oblem. Lithium sealing mainly sealed the pores with lithium aluminate double sa salt was rapidly formed in strong alkaline solution at room temperature, so that the to about 1/10 compared with the conventional sealing. After this sealing 20139029 / 2013-32-9029                                                                       |
| condition of 325 MPa at<br>developed very fine preci-<br>precipitates lead to sign<br>temperature, creep ruptur<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>Abstract<br>The anodic oxide films are<br>of engines and car bodies.<br>improve the corrosion resi-<br>water or solution that add<br>is large because of long sea<br>In this study, the authors<br>solution to solve above pr<br>(LiH(AlO2)2·5H2O). This<br>sealing time was reduced to<br>6. Paper No.(JSAE/SAE)<br>7. Paper title | d additional dynamic precipitation of S' precipitates during testing; especially at the 100 °C, the alloy exhibits longer creep life of at least 14,604 h due to most full pitates dispersion. When creep test at higher temperature (130°C), the grown ificant reduction of creep rupture life. The correlation of applied stress, cree e time, and microstructure evolution were discussed. 20139049 / 2013-32-9049 Corrosion resistance improvement technology of anodic oxide films on aluminum alloy that uses a lithium hydroxide solution Masahiro Fujita, Hiroomi Tanaka, Hitoshi Muramatsu (SUZUKI MOTOR CORPORATION), Sachiko Ono, Hidetaka Asoh (Kogakuin University) formed to improve the corrosion resistance on aluminum alloy that used as the par Because these films are porous structure, it is necessary to seal the pores to further istance. The pores are sealed with hydrated alumina by treating the films in boiline ed sealing additives. These hydration sealing has a problem that energy consumption aling time and high temperature of solution. have developed a new sealing treatment (Lithium sealing) using a lithium hydroxic oblem. Lithium sealing mainly sealed the pores with lithium aluminate double sa salt was rapidly formed in strong alkaline solution at room temperature, so that the to about 1/10 compared with the conventional sealing. After this sealing 20139029 / 2013-32-9029 Suction flow improvement of Plasma spray cylinder in Outboard Motor |
| condition of 325 MPa at<br>developed very fine preci-<br>precipitates lead to sign<br>temperature, creep ruptur<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>Abstract<br>The anodic oxide films are<br>of engines and car bodies.<br>improve the corrosion resi-<br>water or solution that add<br>is large because of long sea<br>In this study, the authors<br>solution to solve above pr<br>(LiH(AlO2)2·5H2O). This<br>sealing time was reduced to<br>6. Paper No.(JSAE/SAE)                   | d additional dynamic precipitation of S' precipitates during testing; especially at the 100 °C, the alloy exhibits longer creep life of at least 14,604 h due to most full ipitates dispersion. When creep test at higher temperature (130°C), the grown in ificant reduction of creep rupture life. The correlation of applied stress, cree terme, and microstructure evolution were discussed. 20139049 / 2013-32-9049 Corrosion resistance improvement technology of anodic oxide films on aluminum alloy that uses a lithium hydroxide solution Masahiro Fujita, Hiroomi Tanaka, Hitoshi Muramatsu (SUZUKI MOTOR CORPORATION), Sachiko Ono, Hidetaka Asoh (Kogakuin University) formed to improve the corrosion resistance on aluminum alloy that used as the par Because these films are porous structure, it is necessary to seal the pores to further istance. The pores are sealed with hydrated alumina by treating the films in boiline esting additives. These hydration sealing has a problem that energy consumptionaling time and high temperature of solution. have developed a new sealing treatment (Lithium sealing) using a lithium hydroxic oblem. Lithium sealing mainly sealed the pores with lithium aluminate double sa salt was rapidly formed in strong alkaline solution at room temperature, so that the to about 1/10 compared with the conventional sealing. After this sealing 20139029 / 2013-32-9029                                                                       |

| 1. Date                 | October 8 <sup>th</sup> Tuesday        |
|-------------------------|----------------------------------------|
| 2. Room.                | 201B                                   |
| 3. Time                 | 16:00 - 18:00                          |
| 4. Session              | Diesel Engine                          |
| 5. Chair (Affiliation), | Takeshi Maeda (Honda R&D Co.,Ltd.),    |
| co-chair (Affiliation)  | Brian Callahan (Achates Power & Basco) |
|                         |                                        |
| 6. Paper No.(JSAE/SAE)  | 20139021 / 2013-32-9021                |

| 6. Paper No. (JSAE/SAE) | 2013902172013-32-9021                                                         |
|-------------------------|-------------------------------------------------------------------------------|
| 7. Paper title          | Effect of Spray/Wall Interaction on Diesel Combustion and Soot Formation in   |
|                         | Two-Dimensional Piston Cavity                                                 |
| 8. Author (Affiliation) | Kuichun Li, Masaki Ido, Yoichi Ogata, Keiya Nishida, Baolu Shi (University of |
|                         | Hiroshima), Daisuke Shimo (Mazda Motor Corporation)                           |

The effects of spray/wall interaction on diesel combustion and soot formation in a two-dimensional piston cavity were studied with a high speed color video camera in a constant volume combustion vessel. The two-dimensional piston cavity was applied to generate the impinging spray flame. In the cavity, the flat surface which plays a role as the cylinder head has a 13.5 degree angle with the injector axis and the impinging point was located 30 mm away from the nozzle tip. Three injection pressures of 100, 150, and 200 MPa and a single hole diesel injector (hole diameter: 0.133mm) were selected. The flame structure and combustion process were examined by using the color luminosity images. Two-color pyrometry was used to measure the line-of sight soot temperature and concentration by using the R and B channels of the color images. The soot mass generated by impinging....

| 6. Paper<br>No.(JSAE/SAE) | 20139022 / 2013-32-9022                                                                                                                                                            |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. Paper title            | Combustion Characteristics of Emulsified Blends of Water and Diesel Fuel in a Diesel<br>Engine with Cooled EGR and Pilot Injection                                                 |
| 8. Author (Affiliation)   | Hideyuki Ogawa, Gen Shibata and Takaki Kato (Hokkaido University), Hari<br>Setiapraja (The agency for assessment and application of technology), Kosuke Hara<br>(YANMAR Co., Ltd.) |

9. Abstract

Water and diesel fuel emulsions containing 13% and 26% water by volume were investigated in a modern diesel engine with relatively early pilot injection, supercharging, and cooled EGR. The heat release from the pilot injection with water emulsions is retarded toward the top dead center due to the poor ignitability, which enables larger pilot and smaller main injection quantities. This characteristic results in improvements in the thermal efficiency due to the larger heat release near the top dead center and the smaller afterburning. With the 26% water emulsion, mild, smokeless, and very low NOx operation is possible at an optimum pilot injection quantity and 15% intake oxygen with EGR at or below 0.9 MPa IMEP, a condition where large smoke emissions are unavoidable with regular unblended diesel fuel. Heat transfer analysis with Woschni's equation did not...

| 6. Paper No.(JSAE/SAE)  | 20139103 / 2013-32-9103                                                        |
|-------------------------|--------------------------------------------------------------------------------|
| 7. Paper title          | CFD Modeling of a Turbo-charged Common-rail Diesel Engine                      |
| 8. Author (Affiliation) | Guan-Jhong Wang, Chia-Jui Chiang, Yu-Hsuan Su (National Taiwan University of   |
|                         | Science and Technology), Yong-Yuan Ku (Automotive Research and Testing Center) |

9. Abstract

In this study, a single cylinder diesel engine model is built via the ANSYS FLUENT CFD solver to simulate the phenomenon during each stroke. The initial conditions and boundary conditions are set based on experimental data obtained from a turbo-charged common-rail diesel engine developed by Mitsubishi. The variables that can be observed from the CFD model include cylinder pressure, gas velocity, cylinder temperature, fuel particle tracks, and mass fraction of cylinder gas components. The simulation results display the effects of the fuel injection timings on the combustion heat release process, cylinder pressure and cylinder temperature at different engine operation conditions. The pure diesel ( $C_{10}H_{22}$ ) is adopted in this simulation study.

| 6. Paper No.(JSAE/SAE)  | 20139112 / 2013-32-9112                                                      |
|-------------------------|------------------------------------------------------------------------------|
| 7. Paper title          | Study on Combustion and Soot Emission of Ethanol or Butanol Blended with Gas |
|                         | Oil in a Direct Injection Diesel Engine                                      |
| 8. Author (Affiliation) | Shohei Yamamoto, Shotaro Watanabe, Keisuke Komada, Daisaku Sakaguchi,        |
|                         | Hironobu Ueki, Masahiro Ishida (Nagasaki University)                         |

# 9. Abstract

In order to utilize bio-alcohols as the fuel for diesel engines, combustion characteristics of alcohol blended with gas oil were compared between ethanol and n-butanol in a direct injection diesel engine. In the case of the same cetane number between ethanol and butanol blends, the time-history of combustion, in other words, the ignition delay, the diffusion combustion and the combustion duration, coincided almost completely in both blend fuels. However, the smoke density of the butanol blend was smaller than that of the ethanol blend. This result must be caused by difference in soot formation process between ethanol and butanol blends. Thus, it is difficult to predict the trend of the soot emission in combustion of alcohol blends only by using the existing phenomenological model of the soot formation in the combustion of gas oil. In the present study, the concept ...

| 1. Date<br>2. Room.<br>3. Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | October 8 <sup>th</sup> Tuesday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | October 8 Tuesday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2 Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| o. mine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16:00 - 18:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4. Session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Engine Technology III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5. Chair (Affiliation),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Michihisa Nakagawa (Kawasaki Heavy Industries, Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| co-chair (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stefano Frigo (University of Pisa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20139105 / 2013-32-9105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Investigation on Friction Behaviour of a Single Cylinder Gasoline Engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T Sukumaran Vipin, Joseph Sumith, Allwyn Dias, K Chandra Reddy, S Saju, Mohan<br>D Umate (TVS Motor Company Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| overall engine frictional<br>characteristics due to pur<br>110cc, single cylinder 4-str<br>commonly used to investig<br>understanding of the mak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | erformance and fuel economy of a reciprocating engine, it is important to reduce the<br>losses. In this paper, author conducts an experimental study on the friction<br>nping loss, valve-train system, piston assembly, auxiliaries and transmission for a<br>oke gasoline engine using frictional strip-down analysis. Friction strip-down method is<br>ate the frictional contribution of various engine elements at high speeds and for better<br>e-up of the total engine friction. The engine friction measurements for the particular<br>motoring test rig at different engine speeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20139160 / 2013-32-9160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The Numerical Investigation on the Performance of Rotary Engine with Leakage,<br>Different Fuels and Recess Sizes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dun-Zen Jeng, Ming-June Hsieh, Chih-Chuan Lee (Chung-Shan Institute of Science<br>and Technology), Yu Han (National Chung Hsing University)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| this model were used to s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | imulate fuel-air mixing. Three different apex seal clearances (0mm, 0.4mm, 0.5mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| were simulated. The comp<br>comparison in this study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | imulate fuel-air mixing. Three different apex seal clearances (0mm, 0.4mm, 0.5mm) putations with two types of fuel, CH4 and C8H18, were performed and put in result The recess sizes were based on three compression ratios, 8.33, 9.55 and 10.18. To uction in the model with leakage, a porous region was generated to model this quite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| were simulated. The comp<br>comparison in this study.<br>simplify rotor mesh constr<br>small gap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | outations with two types of fuel, CH4 and C8H18, were performed and put in result<br>The recess sizes were based on three compression ratios, 8.33, 9.55 and 10.18. To<br>uction in the model with leakage, a porous region was generated to model this quite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| were simulated. The comp<br>comparison in this study.<br>simplify rotor mesh constr<br>small gap<br>6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | utations with two types of fuel, CH4 and C8H18, were performed and put in result<br>The recess sizes were based on three compression ratios, 8.33, 9.55 and 10.18. To<br>uction in the model with leakage, a porous region was generated to model this quite<br>20139161 / 2013-32-9161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| were simulated. The comp<br>comparison in this study.<br>simplify rotor mesh constr<br>small gap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | autations with two types of fuel, CH4 and C8H18, were performed and put in result<br>The recess sizes were based on three compression ratios, 8.33, 9.55 and 10.18. To<br>uction in the model with leakage, a porous region was generated to model this quite<br>20139161 / 2013-32-9161<br>The Intake and Exhaust Pipe Effect on Rotary Engine Performance<br>Dun-Zen Jeng, Ming-June Hsieh, Chih-Chuan Lee (Chung-Shan Institute of Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| were simulated. The comp<br>comparison in this study.<br>simplify rotor mesh constr<br>small gap<br>6. Paper No.(JSAE/SAE)<br>7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | autations with two types of fuel, CH4 and C8H18, were performed and put in result<br>The recess sizes were based on three compression ratios, 8.33, 9.55 and 10.18. To<br>uction in the model with leakage, a porous region was generated to model this quite<br>20139161 / 2013-32-9161<br>The Intake and Exhaust Pipe Effect on Rotary Engine Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>were simulated. The comp<br/>comparison in this study.</li> <li>simplify rotor mesh constri-<br/>small gap</li> <li>6. Paper No.(JSAE/SAE)</li> <li>7. Paper title</li> <li>8. Author (Affiliation)</li> <li>9. Abstract</li> <li>This article is to investigathreecylinder reciprocating<br/>separate chambers. The chata of the real rotary en-<br/>studied, including pipe laboration</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | autations with two types of fuel, CH4 and C8H18, were performed and put in result<br>The recess sizes were based on three compression ratios, 8.33, 9.55 and 10.18. To<br>uction in the model with leakage, a porous region was generated to model this quite<br>20139161 / 2013-32-9161<br>The Intake and Exhaust Pipe Effect on Rotary Engine Performance<br>Dun-Zen Jeng, Ming-June Hsieh, Chih-Chuan Lee (Chung-Shan Institute of Science<br>and Technology), Yu Han (National Chung Hsing University)<br>ate the inlet and exit pipe effect on a rotary engine performance. A 1-dimensional,<br>g engine model was adopted to simulate the operation of a rotary engine with three<br>mamber volume variation in this model was identical to a real rotary engine. The test<br>agine were used as a benchmark test for this model. Various parameters are then<br>ength, pipe diameters, and pipe shape with convergent/divergent angles. In the<br>results showed that the averaged performance data (BSFC, brake work, brake torque,                                                                                                                                                                                                                                 |
| <ul> <li>were simulated. The comp<br/>comparison in this study.</li> <li>simplify rotor mesh constri-<br/>small gap</li> <li>6. Paper No.(JSAE/SAE)</li> <li>7. Paper title</li> <li>8. Author (Affiliation)</li> <li>9. Abstract</li> <li>This article is to investigathreecylinder reciprocating<br/>separate chambers. The chata of the real rotary en-<br/>studied, including pipe laperformance analysis, the<br/>pressure distribution) was</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | autations with two types of fuel, CH4 and C8H18, were performed and put in result<br>The recess sizes were based on three compression ratios, 8.33, 9.55 and 10.18. To<br>uction in the model with leakage, a porous region was generated to model this quite<br>20139161 / 2013-32-9161<br>The Intake and Exhaust Pipe Effect on Rotary Engine Performance<br>Dun-Zen Jeng, Ming-June Hsieh, Chih-Chuan Lee (Chung-Shan Institute of Science<br>and Technology), Yu Han (National Chung Hsing University)<br>ate the inlet and exit pipe effect on a rotary engine performance. A 1-dimensional,<br>g engine model was adopted to simulate the operation of a rotary engine with three<br>mamber volume variation in this model was identical to a real rotary engine. The test<br>agine were used as a benchmark test for this model. Various parameters are then<br>ength, pipe diameters, and pipe shape with convergent/divergent angles. In the<br>results showed that the averaged performance data (BSFC, brake work, brake torque,                                                                                                                                                                                                                                 |
| <ul> <li>were simulated. The comp<br/>comparison in this study.</li> <li>simplify rotor mesh constri-<br/>small gap</li> <li>6. Paper No.(JSAE/SAE)</li> <li>7. Paper title</li> <li>8. Author (Affiliation)</li> <li>9. Abstract</li> <li>This article is to investigathreecylinder reciprocating<br/>separate chambers. The chata of the real rotary en-<br/>studied, including pipe laperformance analysis, the second seco</li></ul> | autations with two types of fuel, CH4 and C8H18, were performed and put in result<br>The recess sizes were based on three compression ratios, 8.33, 9.55 and 10.18. To<br>uction in the model with leakage, a porous region was generated to model this quite<br>20139161 / 2013-32-9161<br>The Intake and Exhaust Pipe Effect on Rotary Engine Performance<br>Dun-Zen Jeng, Ming-June Hsieh, Chih-Chuan Lee (Chung-Shan Institute of Science<br>and Technology), Yu Han (National Chung Hsing University)<br>ate the inlet and exit pipe effect on a rotary engine performance. A 1-dimensional,<br>g engine model was adopted to simulate the operation of a rotary engine with three<br>hamber volume variation in this model was identical to a real rotary engine. The test<br>agine were used as a benchmark test for this model. Various parameters are then<br>ength, pipe diameters, and pipe shape with convergent/divergent angles. In the<br>results showed that the averaged performance data (BSFC, brake work, brake torque,<br>within 5 % in tolerance                                                                                                                                                                                                      |
| <ul> <li>were simulated. The comp<br/>comparison in this study.</li> <li>simplify rotor mesh constri-<br/>small gap</li> <li>6. Paper No.(JSAE/SAE)</li> <li>7. Paper title</li> <li>8. Author (Affiliation)</li> <li>9. Abstract</li> <li>This article is to investigathreecylinder reciprocating<br/>separate chambers. The chata of the real rotary en-<br/>studied, including pipe laperformance analysis, the<br/>pressure distribution) was</li> <li>6. Paper No.(JSAE/SAE)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>utations with two types of fuel, CH4 and C8H18, were performed and put in result<br/>The recess sizes were based on three compression ratios, 8.33, 9.55 and 10.18. To<br/>uction in the model with leakage, a porous region was generated to model this quite</li> <li>20139161 / 2013-32-9161</li> <li>The Intake and Exhaust Pipe Effect on Rotary Engine Performance</li> <li>Dun-Zen Jeng, Ming-June Hsieh, Chih-Chuan Lee (Chung-Shan Institute of Science<br/>and Technology), Yu Han (National Chung Hsing University)</li> <li>ate the inlet and exit pipe effect on a rotary engine performance. A 1-dimensional,<br/>gengine model was adopted to simulate the operation of a rotary engine with three<br/>tamber volume variation in this model was identical to a real rotary engine. The test<br/>gine were used as a benchmark test for this model. Various parameters are then<br/>ength, pipe diameters, and pipe shape with convergent/divergent angles. In the<br/>results showed that the averaged performance data (BSFC, brake work, brake torque,<br/>within 5 % in tolerance</li> <li>20139114 / 2013-32-9114</li> <li>Effects of EGR on Knock-level of Small Spark Ignition Engine with Gasoline-base</li> </ul>                          |
| <ul> <li>were simulated. The comp<br/>comparison in this study.</li> <li>simplify rotor mesh constri-<br/>small gap</li> <li>6. Paper No.(JSAE/SAE)</li> <li>7. Paper title</li> <li>8. Author (Affiliation)</li> <li>9. Abstract</li> <li>This article is to investigat<br/>threecylinder reciprocating<br/>separate chambers. The ch<br/>data of the real rotary en-<br/>studied, including pipe loperformance analysis, the<br/>pressure distribution) was</li> <li>6. Paper No.(JSAE/SAE)</li> <li>7. Paper title</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>autations with two types of fuel, CH4 and C8H18, were performed and put in result<br/>The recess sizes were based on three compression ratios, 8.33, 9.55 and 10.18. To<br/>uction in the model with leakage, a porous region was generated to model this quite</li> <li>20139161 / 2013-32-9161</li> <li>The Intake and Exhaust Pipe Effect on Rotary Engine Performance</li> <li>Dun-Zen Jeng, Ming-June Hsieh, Chih-Chuan Lee (Chung-Shan Institute of Science<br/>and Technology), Yu Han (National Chung Hsing University)</li> <li>ate the inlet and exit pipe effect on a rotary engine performance. A 1-dimensional,<br/>gengine model was adopted to simulate the operation of a rotary engine with three<br/>tamber volume variation in this model was identical to a real rotary engine. The test<br/>gine were used as a benchmark test for this model. Various parameters are then<br/>ength, pipe diameters, and pipe shape with convergent/divergent angles. In the<br/>results showed that the averaged performance data (BSFC, brake work, brake torque,<br/>within 5 % in tolerance</li> <li>20139114 / 2013-32-9114</li> <li>Effects of EGR on Knock-level of Small Spark Ignition Engine with Gasoline-base<br/>Kerosene-mixed Fuel</li> </ul> |

| 1. Date                 | October 8 <sup>th</sup> Tuesday                   |
|-------------------------|---------------------------------------------------|
| 2. Room.                | 201D                                              |
| 3. Time                 | 16:00 - 18:00                                     |
| 4. Session              | Hybrids, Electric Drives & Fuel Cells I           |
| 5. Chair (Affiliation), | Yasuyuki Muramatsu (Yamaha Motor Co., Ltd.),      |
| co-chair (Affiliation)  | Glenn Bower (University of Wisconsin-Madison)     |
|                         |                                                   |
| 6. Paper No.(JSAE/SAE)  | 20139006 / 2013-32-9006                           |
| 7. Paper title          | Development of a New Regenerative Braking System  |
| 8. Author (Affiliation) | Takahiro Noyori, Setsuko Komada, Hirobumi Awakawa |
|                         | (SUZUKI MOTOR CORPORATION)                        |

Our new technology, the first technology in the small vehicle industry, achieves the fuel economy improvement due to the electricity through the highly efficient electricity generation and charge by the regenerative braking energy obtained during vehicle decelerating or coasting. The newly developed technologies is the regenerative braking system, which minimizes electricity generation during vehicle driving, while maximizes it during vehicle decelerating or coasting. Regenerative braking is the function to generate electric power using with the regenerative braking energy obtained during vehicle decelerating or coasting through the accelerator pedal released or the brake pedal applied. The kinetic energy from the vehicle in motion is recaptured as the electric power to be used for the electric component operation.

| 6. Paper No.(JSAE/SAE)  | 20139009 / 2013-32-9009                                                  |
|-------------------------|--------------------------------------------------------------------------|
| 7. Paper title          | Design and Analysis of Single-cylinder 22 HP Hybrid Powertrain           |
|                         | for Motorcycles                                                          |
| 8. Author (Affiliation) | Chun-Hsien Wu, Wei-Ming Su, Pei-Jen Wang (National Tsing Hua University) |
| 9 Abstract              |                                                                          |

A single-cylinder engine of 22 HP plus 10 HP hybrid powertrain for motorcycles is proposed in this paper. An electric DC brushless motor, connected via crankshaft to the 249.4cc four-stroke internal combustion engine (ICE), drives a continuous variable transmission (CVT) to the rear wheel for propulsion of vehicle. A rule-based controller structure is established for management of power from both the ICE and motor to reduce fuel consumption and achieve charge sustaining. With the help from Matlab/Simulink programs, simulations and assessment of the efficacy in emission reduction of the proposed hybrid motorcycle under ECE-R40 driving cycle are analyzed.

| 6. Paper No.(JSAE/SAE)  | 20139018 / 2013-32-9018                                                |
|-------------------------|------------------------------------------------------------------------|
| 7. Paper title          | Adaptive-Learning Regeneration Controller Design for Electric Vehicles |
| 8. Author (Affiliation) | Chien-An Chen, Ming-Chih Lin (Automotive Research & Testing Center)    |
| 9 Abstract              |                                                                        |

An adaptive-learning regeneration control strategy to enhance the regeneration quality for electric vehicles (EV) is proposed. In recent years, several kinds of EV are equipped with regeneration function. For example, i-MiEV, the EV of Mitsubishi motors, whose energy regeneration ratio is adjusted via the gear shift for standard using, increasing energy regeneration ratio and decreasing energy regeneration ratio. In Taiwan, the TOBE W' car and Luxgen MPV EV, whose energy regeneration ratios are adjusted by a knob and a shaft, respectively. However, the abovementioned methods are not adaptively to be adjusted to adapt the various customs of drivers. There are some drawbacks, such as manually adjusting energy regeneration ratio and constant energy regeneration ratio, etc. Therefore, an adaptive-learning regeneration control strategy is proposed to account for the above-mentioned drawbacks.

| 6. Paper No.(JSAE/SAE)  | 20139035 / 2013-32-9035                                   |
|-------------------------|-----------------------------------------------------------|
| 7. Paper title          | A Research on the Application Layer Protocols of Wireless |
|                         | Communication of Electric Vehicle                         |
| 8. Author (Affiliation) | Yen-Chun Lai (Automotive Research & Testing Center)       |
| 0 11 / /                |                                                           |

#### 9. Abstract

On electric vehicle monitoring, there is no application layer standard to support the wireless communication. As a developing target, there are more varieties on the signal combination as the modules or unit carried by an electric vehicle change. Protocols between the transmission unit and the reception server are made to change frequently, so are the programs on both the transmission unit and the reception server, and results in the difficulty to the development and maintenance of the whole system.

Since electric motorcycle and electric bicycle are also developing with hybrid type, same problems would occur to them. It would be favorable to find a protocol with endurance to such variability. ASN.1 is introduced as a valuable candidate. An effort is made to apply ASN.1 to wireless communication of electric vehicle, to see how well it is to adjust to the variability of signals. Also a new method is developed to ...

| 1. Date                                                                                                                                                                                                            | October 8 <sup>th</sup> Tuesday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Room.                                                                                                                                                                                                           | 201E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3. Time                                                                                                                                                                                                            | 16:00 - 18:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4. Session                                                                                                                                                                                                         | Measurement & Simulation II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5. Chair (Affiliation),                                                                                                                                                                                            | Sigeru Fujii (Yamaha Motor Co., Ltd.),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| co-chair (Affiliation)                                                                                                                                                                                             | Stephan Schmidt (Graz University of Technology)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                             | 20139034 / 2013-32-9034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7. Paper title                                                                                                                                                                                                     | Stress prediction of engine components resulting from an engine vibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8. Author (Affiliation)                                                                                                                                                                                            | Masahiro Akei, Kouich Kouzato, Toshiyuki Uyama (YANMAR Co.,Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9. Abstract                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MBD (Multi Body Dynamic<br>engine models which are in<br>machine, many kinds of co-<br>important to predict accur<br>study, for exhaust silences<br>calculated by FEA and Mi-<br>result. In addition, the stree    | we predict the stress of engine components resulting from vibration of engine, using<br>cs) and FEA (Finite Element Analysis). In a development of industrial engine, many<br>installed on various machines are developed. Depending on operating condition of<br>omponents are designed. Therefore, in order to shorten a development period, it is<br>ately stress of components and evaluate its durability in the design phase. In this<br>r, the stress of engine components which are caused from of engine vibration is<br>BD and the accuracy of prediction is confirmed as compared with the experiment<br>ess of oil suction pipe is predicted. As vibrational characteristic of oil suction pipe is<br>and mass method is used in order to take into consideration the influence                                                                                              |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                             | 20139043 / 2013-32-9043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7. Paper title                                                                                                                                                                                                     | Development of Strength Analysis Method for Off-Road Motorcycle Radiator<br>Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8. Author (Affiliation)                                                                                                                                                                                            | Masakazu Yamaya, Akihiro Chiba, Yuuki Murayama (Yamaha Motor Co., Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9. Abstract                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| plastic side cover. This may<br>The strength of the radiate<br>easily if the motorcycle to<br>assembly in strength te                                                                                              | e topples over, the radiator may strike the ground and receive an impact through the<br>y deform the radiator, reducing its cooling performance or leading to a coolant leak.<br>or and plastic side cover was designed so that the radiator assembly will not deform<br>opples over at low speeds. However, due to the complex behavior of the radiator<br>ests, a degree of trial-and-error may be necessary to incorporate strength<br>alone. Therefore, a strength test simulation method was developed to help design the<br>for assemblies.                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6. Paper No.(JSAE/SAE)<br>7. Paper title                                                                                                                                                                           | 20139044 / 2013-32-9044<br>Application of FEM Analysis Using Loads Predicted from Strain Measurement in<br>Motorcycle Frame Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8. Author (Affiliation)                                                                                                                                                                                            | Mitsuo Hirai, Takashi Ueno, Youhei Iwaki, Shojiro Oohama (Yamaha Motor Co.,<br>Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9. Abstract                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| predicted from measured s<br>inversion, and can be used<br>advantage of this method is<br>the data usually needed for<br>large amount of time and n<br>a lot of things to be concern                               | broach for efficiently evaluating motorcycle main frame strength using external loads<br>strain data in our development process. The loads are calculated by simple matrix<br>d as boundary conditions of static analysis that resembles actual phenomena. The<br>s that it allows relatively precise reproduction of actual boundary conditions without<br>or dynamic simulation such as tire and suspension characteristics which often take<br>nan-hour to obtain. Although this approach is simple and common practice, there are<br>need for gaining useful results in a broad range of stages in the motorcycle main frame<br>we effectively make use of this approach is going to be introduced here.                                                                                                                                                                             |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                             | 20139096 / 2013-32-9096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7. Paper title                                                                                                                                                                                                     | Development of Estimation for Strain in Damages of Motorcycle Engine Parts When                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                    | Tipped Over from Stationary State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8. Author (Affiliation)                                                                                                                                                                                            | Shigesato Nakamura, Hisayoshi Ogura, Kota Noguchi, Yasuhiro Miyazaki (Honda<br>R&D Co., Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9. Abstract                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| design, the strains that p<br>stationary state. Splitting a<br>up to the end of collision or<br>contact of engine parts on<br>elastro-plastic FEM analys<br>FEM analysis, we minimiz<br>model to shorten the compu | tion method was developed in which it was able to estimate, in the early stage of<br>optentially lead to damages to motorcycle engine parts when tipped over from a<br>a series of phenomena from the start of tilting of motorcycle from the upright position<br>f engine parts after the contact on the ground to two groups by before and after the<br>the ground, we applied the multi body dynamics analysis to the first group, and the<br>sis to the latter one. In the computer simulation of collision using the elastro-plastic<br>ed the FEM models from the entire motorcycle models and treated others as a solid<br>atation period. It is also realized that the strains occurring in the engine parts can be<br>only the mass of the parts which are rigidly mounted on the engine. The developed<br>remarkable reduction of analysis time while assuring a high accuracy |

| 1. Date                 | October 9 <sup>th</sup> Wednesday                       |
|-------------------------|---------------------------------------------------------|
| 2. Room.                | 201A                                                    |
| 3. Time                 | 8:30 - 10:00                                            |
| 4. Session              | Alternative Fuels III                                   |
| 5. Chair (Affiliation), | Yuh-Yih Wu (National Taipei University of Technology.), |
| co-chair (Affiliation)  | Kai W. Beck (MOT GmbH)                                  |

| 6. Paper No.(JSAE/SAE)  | 20139174 / 2013-32-9174                                                  |
|-------------------------|--------------------------------------------------------------------------|
| 7. Paper title          | An Application of Cellulosic Liquefaction Fuel for Diesel Engine         |
|                         | -Improvement of Fuel Property by Cellulosic Liquefaction with Plastics - |
| 8. Author (Affiliation) | Kohei Suzuki, Akira Iijima, Hideo Shoji, Koji Yoshida (Nihon University) |

There are few investigations to change wood biomasses to the industrially available energy, so that a new conversion technology of biomass to liquid fuel has been established by the direct liquefaction process. However, cellulosic liquefaction fuel (for short CLF) cold not mixed with diesel fuel. In this study, the plastic was mixed with wood to improve the solubility of CLF to diesel fuel. CLF made by the direct co-liquefaction process could be stably and completely mixed with diesel fuel in any mixing ratio and CLF included 2 wt.% of oxygen. The test engine was an air-cooled, four-stroke, single cylinder, direct fuel injection diesel engine. In the engine starting condition test, the ignition timing of 5 wt.% CLF mixed diesel fuel was slightly delayed at immediately after the engine started, however the ignition timing was almost the same as diesel fuel after the engine was warmed-up. In ordinary engine performance test, the combustion characteristics, engine performances and exhaust gas emissions were almost similar to those of diesel fuel up to mixing ratio of CLF of 20 wt%. However, THC was decreased as the weight mixing ratio of CLF increased. Therefore, CLF can be practically used as a good additive for diesel engine.

| 6. Paper No.(JSAE/SAE)  | 20139134 / 2013-32-9134                                                                              |
|-------------------------|------------------------------------------------------------------------------------------------------|
| 7. Paper title          | The Feasibility Study of Low-concentration Butanol as Fuel on Motorcycle                             |
| 8. Author (Affiliation) | Ta-Chuan Liu, Zong-Da Lin, Chia-Yun Yeh, Yun-Yang Chen (Industrial Technology<br>Research Institute) |
| 0 11 / /                |                                                                                                      |

9. Abstract

This paper describes the test results of low concentration butanol gasoline as fuel on motorcycle. It contains an immerse test to study material compatibility of 50% nbutanol gasoline(nB50) with some rubber, thermoplastics and Aluminum alloy usually used on motorcycle engine fuel system. An engine dyno test which is to compare the combustion characteristics of 20% n-butanol-gasoline (nB20) and gasoline. And an vehicle emission and fuel test which is to evaluate nB20 fuel emission characteristics and compliance of Taiwan motorcycles emission standards. The results shown there is no malfunction concern to use nB20 as fuel on the fuel injection motorcycle designed for gasoline. However, the NOx exhaust increase is a common issue of Alcohol alternative fuels on motorcycle

| 6. Paper No.(JSAE/SAE)  | 20139156 / 2013-32-9156                                                         |
|-------------------------|---------------------------------------------------------------------------------|
| 7. Paper title          | Development of Alternative Fuel Content Estimation Method and Apparatus         |
| 8. Author (Affiliation) | Masayoshi Uno, Takashi Abe, Shinichi Kuratani (Kawasaki Heavy Industries, Ltd.) |

9. Abstract

Environmental and energy independence concerns have stimulated the development of an apparatus for alternative fuel. It estimates the ethanol content in the fuel in order to perform a reliable combustion. One means for measuring the ratio of ethanol present in the fuel tank is to provide a fuel composition sensor. However, such a fuel composition sensor increases the number of parts and causes the cost issues in motorcycles. We used an oxygen sensor disposed to the exhaust pipe to estimate the ethanol content without increasing the parts and costs. The common method of the estimation is the oxygen feedback in stoichiometric air fuel ratio condition. Unfortunately, two-wheel vehicles are often operated in rich conditions and have less chance of stoichiometric condition. In this study, we used a one-liter four-cylinder motorcycle, and have developed a practical method to estimate the ethanol content even in the not-stoichiometric condition. A newly developed method uses two lambda variables (ratio of actual air-fuelratio to stoichiometric air-fuel-ratio) and provides more chance of the oxygen feedback for motorcycles. Using an engine dynamometer and a chassis dynamometer, we conducted some verification examinations for this method and the apparatus. The results showed the method's applicability from 0% to 100% ethanol content.

| 1. Date                 | October 9 <sup>th</sup> Wednesday                                             |
|-------------------------|-------------------------------------------------------------------------------|
| 2. Room.                | 201B                                                                          |
| 3. Time                 | 9:00 - 10:00                                                                  |
| 4. Session              | Lubricants                                                                    |
| 5. Chair (Affiliation), | Hirotaka Kurita (Yamaha Motor Co., Ltd.),                                     |
| co-chair (Affiliation)  | Brent Dohner (The Lubrizol Corporation)                                       |
|                         |                                                                               |
| 6. Paper No.(JSAE/SAE)  | 20139033 / 2013-32-9033                                                       |
| 7. Paper title          | Highly Efficient Lubricant for Sport Motorcycle Application –Fuel Economy and |
|                         | Durability Testing                                                            |
| 8. Author (Affiliation) | Gianluigi Zoli, May Turner, Cliff Newman (Castrol Ltd.)                       |

As a result of extremely competitive market environment and severe emission legislation, motorcycle manufacturers are giving increased focus to the lubricant as a potential tool to improve engine performance reducing at same time tailpipe emissions and fuel consumption. However, due to very specific hardware constraints, application of highly efficient low viscosity oils to modern motorcycle requires careful formulation approach and thorough testing procedure. Previous work carried out by Castrol and described in SAE paper # 2011-32-0513 indicated that optimized, low viscosity motorcycle engine oils, formulated with dedicated technology to combine optimum clutch compatibility with engine and gearbox protection, can bring significant increase in engine power and acceleration in comparison with commercially available lubricants. This paper describes the progress of the development work, aiming at further understanding potential benefits and constraints arising from the application of low viscosity, highly efficient engine oils to current motorcycle engine technology. The work included the evaluation of the fuel economy potential for experimental low viscosity formulations using a sport tourer motorcycle fitted on chassis dynamometer, followed by extended high speed engine durability evaluation of one of the formulations on two different super sport motorcycle engines, representative of latest generation hardware technology. Results of Fuel Economy tests showed that carefully formulated low viscosity lubricants can provide reduction in fuel consumption when compared with conventional, commercially available products. Both the durability test programs were successfully completed with key engine and driveline components in good conditions at end of test, confirming potential applicability of low viscosity engine oils to modern high performance sport bikes.

| 6. Paper No.(JSAE/SAE)  | 20139063 / 2013-32-9063                                                        |
|-------------------------|--------------------------------------------------------------------------------|
| 7. Paper title          | Improving Fuel Eficiency of Motorcycle Oils                                    |
| 8. Author (Affiliation) | Brent Dohner, Alex Michlberger, Chris Castanien (The Lubrizol Corporation),    |
| 9                       | Ananda Gajanayake (Lubrizol Japan Ltd.), Sumitaka Hirose (Honda R&D Co., Ltd.) |

#### 9. Abstract

As the motorcycle market grows, the fuel efficiency of motorcycle oils is becoming an important issue due to concerns over the conservation of natural resources and the protection of the environment. Fuel efficient engine oils have been developed for passenger cars by moving to lower viscosity grades and formulating the additive package to reduce friction. Motorcycle oils, however, which operate in much higher temperature regimes, must also lubricate the transmission and the clutch, and must provide gear protection. This makes their requirements fundamentally very different from passenger car oils. Developing fuel efficient motorcycle oils, therefore, can be a difficult challenge. Formulating to reduce friction may cause clutch slippage and reducing the viscosity grade has limitations in motorcycles due to the need for gear protection. Additionally, in high temperature motorcycle engines, low viscosity oils are more prone to oil consumption, which will hurt fuel economy, and deposit formation, which may reduce overall performance.

The lowest viscosity grade oil currently recommended by Honda for motorcycle applications is a 10W-30. This study describes the development of a new 5W-30 motorcycle oil to deliver enhanced fuel efficiency in Honda motorcycle engines. The key target of this development was to deliver enhanced fuel efficiency with a 5W-30 while not compromising any of the performance of the current high quality 10W-30 oil. Testing was conducted to validate oil consumption, clutch performance, oxidation resistance, wear protection, gear protection, and engine cleanliness in modern Honda motorcycle engines. In all aspects, the newly developed 5W-30 oil performed equivalent or better than the high quality 10W-30 reference oil. As the final proof of performance, the new 5W-30 oil was compared with the 10W-30 reference oil in a motored Honda motorcycle engine friction torque test and clearly demonstrated the desired enhanced fuel efficiency.

| 1. Date                 | October 9 <sup>th</sup> Wednesday                                         |
|-------------------------|---------------------------------------------------------------------------|
| 2. Room.                | 201C                                                                      |
| 3. Time                 | 9:00 - 10:00                                                              |
| 4. Session              | Engine Technology IV                                                      |
| 5. Chair (Affiliation), | Shosaku Chiba (Honda R&D Co., Ltd.),                                      |
| co-chair (Affiliation)  | Nagesh Mavinahally (Mavin Tech, LLC.)                                     |
|                         |                                                                           |
| 6. Paper No.(JSAE/SAE)  | 20139169 / 2013-32-9169                                                   |
| 7. Paper title          | Predictive Simulation of PFI Engine Combustion and Emission               |
| 8. Author (Affiliation) | Hisashi Goto, Takeshi Morikawa, Mineo Yamamoto, Minoru Iida (Yamaha Motor |

Co., Ltd.)

# 9. Abstract

This paper reports a methodology to estimate combustion pattern and emission by predictive simple simulation with good accuracy on various conditions of PFI engine. 3D-CFD cord VECTIS has been applied for this simulation, its settings and methods are as follows. RANS equation with liner k-epsilon model has been used as the turbulence model. Turbulent burning velocity equation contains not only turbulent velocity term but also laminar burning velocity term. For ignition model, we use a predictive model called DPIK. We iterate cycle calculation until wallfilm behavior is stabilized to get the reasonable mixture formation. We have applied this methodology to 125cc engine of motorcycle. As a result, we have obtained heat release curve and pressure curve with good accuracy on various operating conditions such as engine speed, engine load, air fuel ratio, wall temperature, and spray direction. CO and NOx calculated simultaneously have also been acceptable. CO formation is based on chemical equilibrium, and NOx formation is based on the extended Zeldovich mechanism. Using these results obtained by this methodology, optimal air-fuel distribution that affects heat release pattern and emission formation is suggested.

| 6. Paper No.(JSAE/SAE)  | 20139093 / 2013-32-9093                                                                                                                           |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. Paper title          | Investigation on the Re-starting Characteristics of a Motorcycle Engine                                                                           |
| 0.00                    | Performing an Idle-stop Approach                                                                                                                  |
| 8. Author (Affiliation) | Rong Fang Horng, Chiu Wei Cheng, Wu Dong Han, Liao Cheng Hsun, Yo Fu Peng<br>(Kun Shan University), Tsai Chien Hsiung, Tseng Chyuan Yow (Pingtung |
|                         | University of Science and Technology)                                                                                                             |

# 9. Abstract

In this study, the re-starting characteristics of a motorcycle engine with idle-stop were investigated. Generally when turning off the engine, there is; or when restarting engine, the air-fuel mixture will become rich to cause the incomplete combustion. When the restarting period is shortened, the aforementioned phenomena would be improved. The aim of this study was to shorten the engine re-starting time during start-up. In the initial stage of the study, the gear ratio of the starter was changed, and the parameters of the engine speed and cylinder pressure were measured and analyzed. The results showed that supplying the additional fuel injection duration of 3 milliseconds into the combustion chamber before the engine was stopped would give the quicker restarting characteristics.



| 1. Date                                           | October 9 <sup>th</sup> Wednesday                                                               |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 2. Room.                                          | 201D                                                                                            |
| 3. Time                                           | 08:30 - 10:00                                                                                   |
| 4. Session                                        | Collegiate Events                                                                               |
| 5. Chair (Affiliation),<br>co-chair (Affiliation) | Takashi Mitome (SUZUKI MOTOR CORPORATION),<br>Glenn R. Bower (The University Wisconsin Madison) |
| <i>.</i>                                          |                                                                                                 |
| 6. Paper No.(JSAE/SAE)                            | 20139100 / 2013-32-9100                                                                         |
| 7. Paper title                                    | Aerodynamic design for SR11 (Formula SAE racing car)                                            |
| 8. Author (Affiliation)                           | Totsuva Fujimata, Takashi Suzuki (Sonhia University)                                            |

 8. Author (Affiliation)
 Tetsuya Fujimoto, Takashi Suzuki (Sophia University)

 9. Abstract

 Newsdays, comparing performance of ESAE (Formula SAE) care are dramatically improved.

Nowadays, cornering performance of FSAE (Formula SAE) cars are dramatically improved due to less mass, kinematic developments and tires. In such circumstance, under high speed conditions, aerodynamical devices work better. It had been decided to attach aerodynamical devices that consist of front wing, rear wing, diffuser (floor) and deflector for SR11 (Fig.1, Table1), a FSAE car developed by Sophia Racing (Japan). To start with developing aerodynamical devices, it had been assumed that how they work. Lap time simulation had been done with VI-car-realtime, which shows the laptime could be shorten by 2 seconds of 60 seconds for a usual FSAE endurance course with 60kgf at 60km/h downforce. Dragforce had been assumed to work well while once, it had been supposed to have a bad influence for laptime. The reason why it works well is at high speed, it works as extra braking force even without tires doesn't contact with ground or unfavorable load distribution. Then, 60kgf downforce was a target, while no target with dragforce. .....

| 6.Paper No.(JSAE/SAE)   | 20139118 / 2013-32-9118                                            |
|-------------------------|--------------------------------------------------------------------|
| 7. Paper title          | Improving the Fuel Economy of Supercharged Engine                  |
| 8. Author (Affiliation) | Yoshiki Fukuhara, Naoya Kimata, Takashi Suzuki (Sophia University) |
| 9 Abstract              |                                                                    |

The paper reviews the experimental development of fuel economy of engine powering the 2012 Formula SAE single seat race car of the University of Sophia. The balance of high power and low fuel consumption is biggest challenge of racing engine. It was found that improving the efficiency of engine by supercharging as a way to achieve that. In order to adapt the supercharger for the engine, the important design points are below: It was found that intake air blow-by gas at combustion chamber is increased in low engine speed. To improve that, the valve overlap angle was changed to adopt supercharged engine and improve effective compression ratio. Typically the racing engine demands maximum torque for performance but that does not imply that the air fuel ratio should be rich than theoretical. The point is the maximum torque of the engine is proportional to the amount of air intake. Therefore, supercharged engine is possible to increase the supercharging pressure for bigger torque. But the base engine is not prepared for bigger torque, the damage of the engine was considered....

| 6. Paper No.(JSAE/SAE)  | 20139176 / 2013-32-9176                                                   |
|-------------------------|---------------------------------------------------------------------------|
| 7. Paper title          | Developing Best Available Technology in a Flex-Fuel Snowmobile by using a |
|                         | Lean-Burn Miller Cycle                                                    |
| 8. Author (Affiliation) | Matt Birt, Gregory W. Davis (Kettering University)                        |
| 9. Abstract             |                                                                           |

Clean snowmobile technology has been developed and applied to a commercially available two cylinder, four-stroke snowmobile. The goals of this effort included reducing exhaust and noise emissions to levels below the U.S National Parks Service (NPS) Best Available Technology (BAT) standard while increasing vehicle dynamic performance with a 50 percent peak power increase over the original equipment version. Engine thermal efficiency has been increased through Late Intake Valve Closure (LIVC) valve timing modification for Miller cycle operation, while high load power was increased through the implementation of a turbocharger and variable electronic boost control. An electronic throttle was also implemented in combination with a "performance/economy" mode switch to limit speed and increase fuel efficiency per the rider's demands. Additionally, a new exhaust system featuring a three-way catalytic converter and a simple, lightweight muffler utilizing a passive acoustic valve has been developed to reduce chemical and noise emissions. This snowmobile was modified to run the full range of ethanol-blended fuels using an affordable flex-fuel sensor and custom controls, including closed-loop wideband exhaust oxygen feedback. Excellent fuel efficiency was achieved with the lean-burn Miller cycle powertrain in addition to an exhaust emissions improvement of 13 percent from the original equipment version.

| 1. Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | October 9 <sup>th</sup> Wednesday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2. Room.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 201E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 3. Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8:30 - 10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 4. Session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Measurement & Simulation III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 5. Chair (Affiliation),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tadao Okazaki (LEMA / Kubota Corporation),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| co-chair (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stephan Schmidt (Graz University of Technology)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20139079 / 2013-32-9079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CFD Scavenging Simulation & Verification of a Sequentially Stratified Charged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Two-Stroke Engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M Bergman, N Enander, M Lawenius (Husqvarna AB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| To effectively use Computational Fluid Dynamics (CFD) for engine emission development it is necessary to be able to simulate the scavenging flow in an engine. The CFD model for a stratified charged two-stroke engine is even more complex. This model have been tuned and finally validated with engine tests. A CFD model has been made of the Husqvarna 560XP two-stroke stratified charged chainsaw engine. The model contains piston, cylinder, inlet system ducting and exhaust silencer. The simulation runs with moving deforming mesh with all ports active. The airflow levels have been fine tuned with inlet restrictions similar to those in the air filter holder, which is not completely included in the present model. The results and behaviour of the CFD model has a very good match to the measured values of the finished product. This gives us confidence in the model and several aspects can now be studied that is virtually impossible to capture by other means. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| f Domon No (ISAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20120169 / 2012-22-0169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20139162 / 2013-32-9162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evaluation Method for Motorcycle Mode Fuel Consumption using a<br>One-Dimensional Engine Simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Masahito SAITOU, Kenji INOUE, Motohiko NISHIMURA, Hidekazu IWASAKI,<br>Takashi YOSHIYAMA, Atsushi HISANO and Daisuke SAKOU (Kawasaki Heavy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Industries, Ltd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | etrum of developments, such as excellent engine performance, low fuel consumption,<br>etion. As global warming become a serious issue internationally, reduction of fuel<br>y of importance. In this study, an evaluation method for the WMTC mode fuel<br>dimensional engine simulation is investigated. The fuel consumption for the WMTC<br>a short time without a complicated vehicle model to simulate transient behavior. The<br>nowed good agreement with measured data for middle-class motorcycle using a chassis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sh<br>dynamometer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | etrum of developments, such as excellent engine performance, low fuel consumption,<br>etion. As global warming become a serious issue internationally, reduction of fuel<br>y of importance. In this study, an evaluation method for the WMTC mode fuel<br>dimensional engine simulation is investigated. The fuel consumption for the WMTC<br>a short time without a complicated vehicle model to simulate transient behavior. The<br>nowed good agreement with measured data for middle-class motorcycle using a chassis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sh<br>dynamometer.<br>6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | etrum of developments, such as excellent engine performance, low fuel consumption,<br>etion. As global warming become a serious issue internationally, reduction of fuel<br>y of importance. In this study, an evaluation method for the WMTC mode fuel<br>dimensional engine simulation is investigated. The fuel consumption for the WMTC<br>a short time without a complicated vehicle model to simulate transient behavior. The<br>nowed good agreement with measured data for middle-class motorcycle using a chassis<br>20139157 / 2013-32-9157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sh<br>dynamometer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | etrum of developments, such as excellent engine performance, low fuel consumption,<br>etion. As global warming become a serious issue internationally, reduction of fuel<br>y of importance. In this study, an evaluation method for the WMTC mode fuel<br>dimensional engine simulation is investigated. The fuel consumption for the WMTC<br>a short time without a complicated vehicle model to simulate transient behavior. The<br>nowed good agreement with measured data for middle-class motorcycle using a chassis<br>20139157 / 2013-32-9157<br>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sh<br>dynamometer.<br>6. Paper No.(JSAE/SAE)<br>7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20139157 / 2013-32-9157<br>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor<br>Propeller Blade Hydrofoil Section Using CFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sh<br>dynamometer.<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | etrum of developments, such as excellent engine performance, low fuel consumption,<br>etion. As global warming become a serious issue internationally, reduction of fuel<br>y of importance. In this study, an evaluation method for the WMTC mode fuel<br>dimensional engine simulation is investigated. The fuel consumption for the WMTC<br>a short time without a complicated vehicle model to simulate transient behavior. The<br>nowed good agreement with measured data for middle-class motorcycle using a chassis<br>20139157 / 2013-32-9157<br>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sh<br>dynamometer.<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20139157 / 2013-32-9157<br>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor<br>Propeller Blade Hydrofoil Section Using CFD<br>Akira Kamiya (Yamaha Motor Co., Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sl<br>dynamometer.<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>The propeller blade hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trum of developments, such as excellent engine performance, low fuel consumption,<br>etion. As global warming become a serious issue internationally, reduction of fuel<br>of importance. In this study, an evaluation method for the WMTC mode fuel<br>dimensional engine simulation is investigated. The fuel consumption for the WMTC<br>a short time without a complicated vehicle model to simulate transient behavior. The<br>nowed good agreement with measured data for middle-class motorcycle using a chassis<br>20139157 / 2013-32-9157<br>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor<br>Propeller Blade Hydrofoil Section Using CFD<br>Akira Kamiya (Yamaha Motor Co., Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sl<br>dynamometer.6. Paper No.(JSAE/SAE)<br>7. Paper title8. Author (Affiliation)<br>9. Abstract9. AbstractThe propeller blade hydro<br>development of the hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | trum of developments, such as excellent engine performance, low fuel consumption,<br>etion. As global warming become a serious issue internationally, reduction of fuel<br>of importance. In this study, an evaluation method for the WMTC mode fuel<br>dimensional engine simulation is investigated. The fuel consumption for the WMTC<br>a short time without a complicated vehicle model to simulate transient behavior. The<br>nowed good agreement with measured data for middle-class motorcycle using a chassis<br>20139157 / 2013-32-9157<br>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor<br>Propeller Blade Hydrofoil Section Using CFD<br>Akira Kamiya (Yamaha Motor Co., Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sl<br>dynamometer.6. Paper No.(JSAE/SAE)<br>7. Paper title8. Author (Affiliation)<br>9. Abstract9. AbstractThe propeller blade hydrod<br>development of the hydrod<br>tunnel involve extended tit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | etrum of developments, such as excellent engine performance, low fuel consumption,<br>etion. As global warming become a serious issue internationally, reduction of fuel<br>y of importance. In this study, an evaluation method for the WMTC mode fuel<br>dimensional engine simulation is investigated. The fuel consumption for the WMTC<br>a short time without a complicated vehicle model to simulate transient behavior. The<br>nowed good agreement with measured data for middle-class motorcycle using a chassis<br>20139157 / 2013-32-9157<br>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor<br>Propeller Blade Hydrofoil Section Using CFD<br>Akira Kamiya (Yamaha Motor Co., Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sl<br>dynamometer.6. Paper No.(JSAE/SAE)<br>7. Paper title8. Author (Affiliation)9. AbstractThe propeller blade hydrod<br>development of the hydrod<br>tunnel involve extended ti<br>realize shorter development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | etrum of developments, such as excellent engine performance, low fuel consumption,<br>etion. As global warming become a serious issue internationally, reduction of fuel<br>y of importance. In this study, an evaluation method for the WMTC mode fuel<br>dimensional engine simulation is investigated. The fuel consumption for the WMTC<br>a short time without a complicated vehicle model to simulate transient behavior. The<br>nowed good agreement with measured data for middle-class motorcycle using a chassis<br>20139157 / 2013-32-9157<br>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor<br>Propeller Blade Hydrofoil Section Using CFD<br>Akira Kamiya (Yamaha Motor Co., Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sl<br>dynamometer.<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>The propeller blade hydro<br>development of the hydro<br>tunnel involve extended ti<br>realize shorter development<br>characteristics taking account                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20139157 / 2013-32-9157<br>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor<br>Propeller Blade Hydrofoil Section Using CFD<br>Akira Kamiya (Yamaha Motor Co., Ltd.)<br>Motor Discussional engine of the factors that determines the propeller performance. In the<br>for the cavitation to the factors that determines the propeller performance. In the<br>for the factors that determines the propeller performance. In the<br>for the factors that determines the propeller performance. In the<br>for the factors that determines the propeller performance. In the<br>for the factors that determines the propeller performance. In the<br>for the factors that determines the propeller performance. In the<br>for the factors that determines for the numerical simulation to<br>and high cost. This is why there are expectations for the numerical simulation to<br>and high cost. On the other hand, a technique for reproducing the hydrofoil<br>pound of the cavitation effect using CFD (Computational Fluid Dynamics) has hardly                                                                                                                                                                                                                                                                                            |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sl<br>dynamometer.<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>The propeller blade hydro<br>development of the hydro<br>tunnel involve extended ti<br>realize shorter development<br>characteristics taking acco<br>been established. There is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | etrum of developments, such as excellent engine performance, low fuel consumption,<br>etron. As global warming become a serious issue internationally, reduction of fuel<br>of importance. In this study, an evaluation method for the WMTC mode fuel<br>dimensional engine simulation is investigated. The fuel consumption for the WMTC<br>a short time without a complicated vehicle model to simulate transient behavior. The<br>nowed good agreement with measured data for middle-class motorcycle using a chassis<br>20139157 / 2013-32-9157<br>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor<br>Propeller Blade Hydrofoil Section Using CFD<br>Akira Kamiya (Yamaha Motor Co., Ltd.)<br>offoil section is one of the factors that determines the propeller performance. In the<br>foil, repeatedly performed experiments using many foil models and the cavitation<br>me and high cost. This is why there are expectations for the numerical simulation to<br>at time and cost cutback. On the other hand, a technique for reproducing the hydrofoil<br>pount of the cavitation effect using CFD (Computational Fluid Dynamics) has hardly<br>no example of performance prediction especially for a hydrofoil section of the outboard                                                                                          |  |
| <ul> <li>Motorcycle has broad spece<br/>emission and noise reduct<br/>consumption is especially<br/>consumption using a one-<br/>mode can be predicted in a<br/>proposed method mostly slidynamometer.</li> <li>6. Paper No.(JSAE/SAE)</li> <li>7. Paper title</li> <li>8. Author (Affiliation)</li> <li>9. Abstract</li> <li>The propeller blade hydrod<br/>development of the hydrod<br/>tunnel involve extended ti<br/>realize shorter development<br/>characteristics taking accord<br/>been established. There is<br/>motor propellers in which</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                 | trum of developments, such as excellent engine performance, low fuel consumption,<br>ttion. As global warming become a serious issue internationally, reduction of fuel<br>of importance. In this study, an evaluation method for the WMTC mode fuel<br>dimensional engine simulation is investigated. The fuel consumption for the WMTC<br>a short time without a complicated vehicle model to simulate transient behavior. The<br>howed good agreement with measured data for middle-class motorcycle using a chassis<br>20139157 / 2013-32-9157<br>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor<br>Propeller Blade Hydrofoil Section Using CFD<br>Akira Kamiya (Yamaha Motor Co., Ltd.)<br>ofoil section is one of the factors that determines the propeller performance. In the<br>offil, repeatedly performed experiments using many foil models and the cavitation<br>me and high cost. This is why there are expectations for the numerical simulation to<br>at time and cost cutback. On the other hand, a technique for reproducing the hydrofoil<br>pount of the cavitation effect using CFD (Computational Fluid Dynamics) has hardly<br>no example of performance prediction especially for a hydrofoil section of the outboard<br>in the trailing edge is cut off. This paper describes the results of the prediction of |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sh<br>dynamometer.<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>The propeller blade hydro<br>development of the hydro<br>tunnel involve extended ti<br>realize shorter developmen<br>characteristics taking acco<br>been established. There is<br>motor propellers in which<br>hydrodynamic characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>20139157 / 2013-32-9157</li> <li>20139157 / 2013-32-9157</li> <li>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor Propeller Blade Hydrofoil Section Using CFD</li> <li>Akira Kamiya (Yamaha Motor Co., Ltd.)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sh<br>dynamometer.<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>The propeller blade hydro<br>development of the hydro<br>tunnel involve extended ti<br>realize shorter developmen<br>characteristics taking acco<br>been established. There is<br>motor propellers in which<br>hydrodynamic characteristics<br>hydrofoil sections taking a                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>20139157 / 2013-32-9157</li> <li>20139157 / 2013-32-9157</li> <li>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor<br/>Propeller Blade Hydrofoil Section Using CFD</li> <li>Akira Kamiya (Yamaha Motor Co., Ltd.)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sh<br>dynamometer.<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>The propeller blade hydro<br>development of the hydro<br>tunnel involve extended ti<br>realize shorter developmen<br>characteristics taking acco<br>been established. There is<br>motor propellers in which<br>hydrodynamic characteristics<br>hydrofoil sections taking a<br>method CFD code. One-fil                                                                                                                                                                                                                                                                                                                                                                                                       | 20139157 / 2013-32-9157<br>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor<br>Propeller Blade Hydrofoil Section Using CFD<br>Akira Kamiya (Yamaha Motor Co., Ltd.)<br>2013 section is one of the factors that determines the propeller performance. In the<br>source and high cost. This is why there are expectations for the numerical simulation to<br>and high cost. This is why there are expectations for the numerical simulation to<br>and high cost. This is why there are expectations for the numerical simulation to<br>at the cavitation effect using CFD (Computational Fluid Dynamics) has hardly<br>no example of performance prediction especially for a hydrofoil section of the cubboard<br>a the trailing edge is cut off. This paper describes the results of the production of<br>the cavitation effect. Calculation was performed by commercial finite volume<br>uid type cavitation effect. Calculation was performed by commercial finite volume<br>uid type cavitation effect. Calculation was performed by commercial finite volume<br>uid type cavitation model was employed, which is calculated simultaneously with                                                                                                                                                                                        |  |
| Motorcycle has broad spec<br>emission and noise reduc<br>consumption is especially<br>consumption using a one-<br>mode can be predicted in a<br>proposed method mostly sl<br>dynamometer.<br>6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)<br>9. Abstract<br>The propeller blade hydro<br>development of the hydro<br>tunnel involve extended ti<br>realize shorter development<br>characteristics taking acco<br>been established. There is<br>motor propellers in which<br>hydrodynamic characteristics taking a<br>method CFD code. One-ff<br>RANS (Reynolds-Averageo                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>20139157 / 2013-32-9157</li> <li>20139157 / 2013-32-9157</li> <li>Prediction of the Cavitation Effect on the Flow Around the Outboard Motor<br/>Propeller Blade Hydrofoil Section Using CFD</li> <li>Akira Kamiya (Yamaha Motor Co., Ltd.)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

| 1. Date                 | October 9 <sup>th</sup> Wednesday                                                   |
|-------------------------|-------------------------------------------------------------------------------------|
| 2. Room.                | 201A                                                                                |
| 3. Time                 | 10:30 - 12:00                                                                       |
| 4. Session              | Materials II                                                                        |
| 5. Chair (Affiliation), | Le-Min Wang (National Defense University),                                          |
| co-chair (Affiliation)  | Stephen Thomas Gurchinoff (Solvay Specialty Polymers)                               |
|                         |                                                                                     |
| 6. Paper No.(JSAE/SAE)  | 20139046 / 2013-32-9046                                                             |
| 7. Paper title          | The effect of surface morphology of cylinder bore surface on anti-scuffing property |
|                         | made by high pressure die-casting process using hyper-eutectic Al-Si alloy          |

8. Author (Affiliation) Takehiro Uhara, Hirotaka Kurita (Yamaha Motor Co., Ltd.)

# 9. Abstract

A monolithic type aluminum (Al) cylinder made of hypereutectic Aluminum-Silicon alloy has been widely used for motorcycle applications. It has a lightweight structure and a superior cooling ability owing to its material property and surface finishing. The cylinder bore surface is required for tribological properties such as an anti-scuffing property, an anti-wear property, and a low friction. Among these tribological properties, the antiscuffing property is quite important to assure the reliability and the safety of the motorcycles.

Usually the cylinder bore surface of the monolithic type Al cylinder is finished by an etching process or a honing process in order to expose silicon (Si) particles from aluminum (Al) matrix for the improvement of the tribological properties. The morphology of the cylinder bore surface including the exposure of Si particles is supposed to make an important effect on its tribological properties, especially on the anti-scuffing property.

In this research, the anti-scuffing property of three kinds of cylinder bore finishing, an etched surface, a Si exposure honed surface and a conventional plateau honed surface is evaluated with using a reciprocated type wear tester. The experimental results are analyzed by using Weibull analysis. The relevance of the application of the Weibull analysis is discussed. It is shown that the experimental data of the anti-scuffing property can be evaluated quantitatively by Weibull analysis. Then the effect of surface morphology on the anti-scuffing ...

| 6. Paper No.(JSAE/SAE)  | 20139082 / 2013-32-9082                                                                |
|-------------------------|----------------------------------------------------------------------------------------|
| 7. Paper title          | Application of Vacuum Assisted Carbide Dispersion Carbonitriding to Connecting<br>Rods |
| 8. Author (Affiliation) | Tsuyoshi Kubota (Yamaha Motor Co., Ltd.)                                               |
| 9. Abstract             |                                                                                        |

In four-cycle single-cylinder motorcycle engines, high Hertzian stress is generated on and beneath the big-end surface of the connecting rod. If the surface strength were improved, the diameter of the big-end could be made smaller, making the entire engine smaller and lighter.

Therefore, application of carbide dispersion carbonitriding using a vacuum furnace (hereinafter referred to as "vacuum CD carbonitriding") on the big-end surface was investigated. Vacuum CD carbonitriding was carried out by three processes. The first was a CD carburizing process. This process is done to obtain granular cementite, but in order to avoid decreasing the strength, it is necessary to prevent the formation of coarsened cementite at the grain boundary. The second process was a refining process. This process is done for the purpose of refining the prior austenite grain size. The third process was a carbonitriding process. This process is done for the purpose of increasing hardness in the vicinity of the surface. Therefore, in this study, three processes— a CD carburizing process, a refining process, and a carbonitriding process— were undertaken, to see if CD carbonitriding with refined prior austenite grain size could be achieved.

The strength of vacuum CD carbonitrided specimen was evaluated using a ball-on-disk type rolling-contact-fatigue testing machine. Vacuum CD carbonitriding was found to have a lifetime six times that of conventional carburizing. Vacuum CD carbonitrided connecting rods have been used in single-cylinder ...

| 6. Paper No.(JSAE/SAE)  | 20139111 / 2013-32-9111                                                     |
|-------------------------|-----------------------------------------------------------------------------|
| 7. Paper title          | Development of HPDC Alloy for Motorcycle Wheel Using Recycled Aluminum      |
| 8. Author (Affiliation) | Yukihide Fukuda, Masahiko Nakagawa, Toshimitsu Suzuki (Honda R&D Co., Ltd.) |
| 9. Abstract             |                                                                             |

The new die cast (HPDC) wheel alloy has been developed using recycled aluminum to attain considerable reduction of energy at the time of material production to make large contribution to the reduction of CO2 emissions.

The material for motorcycle body parts, especially for wheels, requires a sufficient elongation property. However, when recycled aluminum, which contains large amount of impurities, is used as main raw material, the intermetallic compounds crystalize out and the elongation property is deteriorated.

Accordingly, we firstly made the investigations on the elements contained in a recycled aluminum and it was clarified that the elongation property was correlated to the shape of crystallized iron-based intermetallic compounds. Next, it also clarified that addition of manganese (Mn) improved the elongation property by changing the shape of crystallized iron-based intermetallic compounds from the plate form to the clumped form, followed by determination of the optimum content of Mn to prevent coarsening of the compounds. Additionally, it was clarified that the shape and size of crystallized iron-based intermetallic compounds significantly influenced by the solidification rate when casting products.

To analyze the solidification process, we developed a simulation method to estimate the size of metal ...

| 1. Date                 | October 9 <sup>th</sup> Wednesday                    |
|-------------------------|------------------------------------------------------|
| 2. Room.                | 201B                                                 |
| 3. Time                 | 10:30 - 12:00                                        |
| 4. Session              | Engine Components II                                 |
| 5. Chair (Affiliation), | Toshimi Kobayashi (Kawasaki Heavy Industries, Ltd.), |
| co-chair (Affiliation)  | Fabio Auriemma (Tallinn University of Technology)    |

| 6. Paper No.(JSAE/SAE)  | 20139102 / 2013-32-9102                                                      |
|-------------------------|------------------------------------------------------------------------------|
| 7. Paper title          | Improvement of Powder Metallurgy Gears for Engines and Transmissions         |
| 8. Author (Affiliation) | Paul Skoglund, Ola Litström ( Höganäs China Ltd), Dr. Anders Flodin (Höganäs |
|                         | AB)                                                                          |

This paper presents the progress in Powder Metallurgy (PM) Gears, including examples of how to combine the disciplines of materials-, design- and process technology to push the limits towards increased performance, reduced weight, energy consumption and total manufacturing cost. Advancements in materials and manufacturing technology for PM gears will be presented as well as the result from simulations and reverse engineering work on existing automotive transmissions. The results from this work show that the amount and type of load on the individual gears in auto transmissions are very different and this gives room for optimized selection of material and manufacturing process. PM gears do not have the same geometrical design limits as conventional gears machined from wrought steel, and in this paper it is exemplified how modifications of macro-and micro gear geometries of PM gears can reduce weight, inertia and stress levels and in such a way contribute to improved transmissions for cars and motorcycles.

| 6. Paper No.(JSAE/SAE)  | 20139163 / 2013-32-9163                                                                                                                                                                   |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. Paper title          | Idle Air Control Valve for the Small Engine Market                                                                                                                                        |
| 8. Author (Affiliation) | Hong Dian, Chen Kun, Cheng Tao (Continental Automotive Wuhu China), Craig<br>Weldon P.Eng ( Continental Tire Canada), Alois Christiaens, Ren Jie ( Continental<br>Automotive Belgium N.V) |

9. Abstract

Developing countries, facing greater challenges related to air pollution, are enacting more stringent emission rules for small engines. Idle Air Control Valve [IACV] along with Electronic Fuel Injection [EFI] is widely used for emission control in the large engine automotive market. This combination is also considered as one of the best solutions to aid in reducing the tailpipe emissions from small engines. One regulatory board for small engine use in USA is the California Air Resource Board [CARB]. CARB has a separate small engine emission category for nonautomotive Small Off-Road Engine [SORE] consisting of off-road spark-ignition engines below 25 horsepower, including all small off-road engines such as lawn mowers, weed trimmers, garden and other maintenance utility equipment [1]. SORE emission regulations for the handheld equipment were initially implemented in 1995 with most recently Tier II reductions of exhaust emissions in 2010.

| 6. Paper No.(JSAE/SAE)  | 20139068 / 2013-32-9068                                                    |
|-------------------------|----------------------------------------------------------------------------|
| 7. Paper title          | Development of Advanced Propeller Damper (Shift Dampener System)           |
| 8. Author (Affiliation) | Yohei Kuroki, Hiroyuki Tsunekawa, Shunsuke Yukawa (Yamaha Motor Co., Ltd.) |
| 0 11 1 1                |                                                                            |

9. Abstract

Generally, the gearshift mechanism for outboard motors shifts into forward or reverse gear without using the synchromesh arrangement (dog clutch engagement)(See Fig.1). This type of shift mechanism has advantages in simple structure and in saving space and cost, but at the same time, this is often the source of problem due to the abrasion caused by the hitting of gear against the dog clutch before the engagement, as well as large gearshift shock and noise. In addition, the outboard motor horsepower is getting bigger in recent years. As they are equipped with bigger and heavier engines and propellers, the shifting shock and noise tend to become more severe. For this reason, the improvement in this aspect is required.

We looked into the way to reduce the shock and noise by means of propellers, because the propeller can be mounted and replaced easily, which allows the effective improvement to be spread to the outboard motors already in the market. Consequently, the advanced propeller damper for reducing the gearshift shock and noise has been developed. This report presents the development process of the advanced propeller damper.

| 1. Date                 | October 9 <sup>th</sup> Wednesday                                            |
|-------------------------|------------------------------------------------------------------------------|
|                         |                                                                              |
| 2. Room.                | 201C                                                                         |
| 3. Time                 | 10:30 - 12:00                                                                |
| 4. Session              | Engine Controls I                                                            |
| 5. Chair (Affiliation), | Masayoshi Uno (Kawasaki Heavy Industries, Ltd.),                             |
| co-chair (Affiliation)  | Thorsten Raatz (Robert Bosch LLC)                                            |
|                         |                                                                              |
| 6. Paper No.(JSAE/SAE)  | 20139041 / 2013-32-9041                                                      |
| 7. Paper title          | Reduced-order Modeling of Intake Air Dynamics in Single-cylinder Four-stroke |
|                         | Engine                                                                       |

|                         | Engine                                                                             |
|-------------------------|------------------------------------------------------------------------------------|
| 8. Author (Affiliation) | Shun-ichi Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>Ltd.) |

This study deals with reduced-order modeling of intake air dynamics in single-cylinder four-stroke naturally-aspirated spark-ignited engines without surge tanks. It provides an approximate calculation method for embedded micro computers to estimate intake manifold pressures in real time. The calculation method is also applicable to multi-cylinder engines with individual throttle bodies since the engines can be equated with parallelization of the single-cylinder engines. In this paper, we illustrate the intake air dynamics, describe a method to estimate the intake manifold pressures, and show experimental results of the method.

| 6. Paper No.(JSAE/SAE)  | 20139061 / 2013-32-9061                                                   |
|-------------------------|---------------------------------------------------------------------------|
| 7. Paper title          | Estimation of Intake Manifold Absolute Pressure Using Kalman Filter       |
| 8. Author (Affiliation) | Bo-Chiuan Chen, Yuh-Yih Wu, Hsien-Chi Tsai (National Taipei University of |
|                         | Technology)                                                               |
|                         |                                                                           |

#### 9. Abstract

For vehicles with intake manifold absolute pressure (MAP) sensor, the intake air mass is obtained using speed-density method. Since the analog MAP signal will contain high frequency noise with uncertain amplitude, the MAP value obtained in the engine management system using angle based sampling will result in MAP value variation even for engine steady-state operation. In order to properly obtain a MAP value under nonlinear time-varying characteristics, a MAP estimation method based on a closed-loop model is proposed. First, an adaptive two-input single-output intake manifold model is constructed. The Recursive Least Square technique is utilized to on-line identify the intake manifold model with throttle opening angle and engine speed as inputs. The identified intake manifold model is then employed to estimate the MAP using the Kalman Filter. Simulation results show that the proposed method can bring smaller standard deviation of air fuel ratio than that of using conventional methods for noise rejection under open-loop fuel control and system parameters drift. When a high frequency noise with higher amplitude is caught while sampling a MAP value, the proposed method can also reduce the noise effect and preserve the open-loop control performance on air fuel ratio. The proposed method is also investigated if the engine output torque is fluctuated.

| 6. Paper No.(JSAE/SAE)  | 20139037 / 2013-32-9037                                                                                           |
|-------------------------|-------------------------------------------------------------------------------------------------------------------|
| 7. Paper title          | Online engine speed based adaptation of air charge for two-wheelers                                               |
| 8. Author (Affiliation) | Christian Steinbrecher, Bastian Reineke, Jürgen Berkemer, Henning Heikes,<br>Wolfgang Fischer (Robert Bosch GmbH) |

9. Abstract

Regarding the strongly growing two-wheeler market fuel economy, price and emission legislations are in focus of current development work. Fuel economy as well as emissions can be improved by introduction of engine management systems (EMS). In order to provide the benefits of an EMS for low cost motorcycles, efforts are being made at BOSCH to reduce the costs of a port fuel injection (PFI) system.

The present paper describes a method of how to reduce the number of sensors of a PFI system by the use of sophisticated software functions based on high-resolution engine speed evaluation. In order to improve the performance of a system working without a MAP-sensor (manifold air pressure sensor) an air charge feature (ACFn) based on engine speed is introduced. It is shown by an experiment that ACFn allows to detect and adapt changes in manifold air pressure. Cross-influences on ACFn are analyzed by simulations and engine test bench measurements. Whereas the air-fuel ratio can be neglected, the temperature influence has to be considered. Finally, additional applications of engine speed based features for small engine control are discussed. Algorithms for ignition angle optimization and air-fuel ratio adaptation are part of the current development work at Bosch.

| 1. Date                 | October 9 <sup>th</sup> Wednesday                                     |
|-------------------------|-----------------------------------------------------------------------|
| 2. Room.                | 201D                                                                  |
| 3. Time                 | 10:30 - 12:00                                                         |
| 4. Session              | Hybrids, Electric Drives & Fuel Cells II                              |
| 5. Chair (Affiliation), | Jung-Ho Chen, (National Taiwan University),                           |
| co-chair (Affiliation)  | Glenn Bower (University of Wisconsin-Madison)                         |
|                         |                                                                       |
| 6. Paper No.(JSAE/SAE)  | 20139132 / 2013-32-9132                                               |
| 7. Paper title          | Single Cylinder 25kW Range Extender as Alternative to a Rotary Engine |
|                         | Maintaining High Compactness and NVH Performance                      |
| 8. Author (Affiliation) | Christian Hubmann, Frank Beste, Hubert Friedl, Wolfgang Schoffmann    |
|                         | (AVL List GmbH)                                                       |

Due to the restricted capacity of today's battery systems and therefore limited operating range of electric vehicles (EV), several solutions for recharging the energy storage during driving already have been published and still are matter of extensive development programs. One example is the Range Extender (RE), which is a combination of an internal combustion engine (ICE) with a generator-unit, which serves the purpose of a power back-up in case of a battery with low state of charge (SOC) without any direct connection to drivetrain.

For such kind of RE-application different boundary conditions are getting of major importance. Especially in EVs topics like packaging space and NVH behavior do play a main role. To fulfill these important characteristics, AVL has developed a 25kW Wankel-RE unit in which the generator is driven directly from the excenter-shaft of the rotary-piston ICE. With such an arrangement and the correct balancing of the power unit directly on the rotor of the generator, a very small packaging size in combination with a smooth and silent running can be achieved and fulfills the most important characteristics for an electric vehicle. Besides of these outstanding attributes, even RE rotary engine concepts have proven excellent fuel efficiency even under stringent emission challenges, the main drawback of rotary engines can be seen in non-availability of large scale manufacturing devices for specific rotary engine components. Therefore, the industry would prefer and ...

| 6. Paper No.(JSAE/SAE)  | 20139071 / 2013-32-9071                                                                      |
|-------------------------|----------------------------------------------------------------------------------------------|
| 7. Paper title          | Development of Belt-Driven Starter-Generator Control Strategy for Hybrid<br>Electric Vehicle |
| 8. Author (Affiliation) | Qing-Lin Chen, Jieng-jang Liu, Pai-Hsiu Lu<br>(China Engine Corporation, Taiwan)             |

#### 9. Abstract

A Hybrid electric vehicle saves fuel by four aspects, i.e. engine idle-stop, regenerative braking, engine downsizing, and engine load change. Saving fuel by 5-10% is achievable with optimized fuel cut-off strategy. However, emission and drivability trade-off must be carefully treated. The conventional automatic transmission requires a mechanical pump driven by the engine crankshaft offers hydraulic function, lubrication, and cooling. To stop the engine during vehicle idling, transmission fluid pressure will not be sufficiently maintained for the launch clutch in engaged status. Once the engine restarts, the engine speed profile can cause the transmission fluid pressure uncontrollable, which creates bump during vehicle take-off. In most vehicles equipped with a conventional automatic transmission (AT) as well as start-stop function, an electric oil pump is usually installed to maintain fluid pressure.

However, cost and complexity increase, and the electric pump is redundant to the mechanical pump during normal driving. This paper presents a method for smoothing the change of automatic transmission fluid (ATF) pressure by utilizing the belt-driven starter-generator (BSG) using field oriented control (FOC) method and the correlation curve between AT fluid pressure and rotational speed of BSG.

The proposed system reduced the numbers of changes and incremental cost due to additional ...

| 6. Paper No.(JSAE/SAE)  | 20139072 / 2013-32-9072                                                                               |
|-------------------------|-------------------------------------------------------------------------------------------------------|
| 7. Paper title          | Development of the idle-stop starter with pre- and post-engage pinion gear                            |
| 8. Author (Affiliation) | Chih-Wei Hu, Shih-Lin Lin, Heng-Chih Tang, Ting-Chi Kao, Andrew P.H. Lu<br>(China Engine Corporation) |

#### 9. Abstract

Reducing the fuel consumption of conventional ICE vehicles are usually achieved from reducing vehicle running resistance, improving engine efficiency, save the idle energy, and recycling the waste energy. About 5-10% of fuel consumption can be saved by engine idle-stop, which strongly depends on fuel cut-off schedule before the vehicle completely stop.

However, engine shut-off during vehicle coasting-down always exist strong concerns of safety anddrivability issues.Fuel cut-off before vehicle completely stop creates the risk that the driver might change-of-mind (CoM). The driver could request the engine restart during engine running downperiod, when engine speed between 200-500rpm.

With convention starter, the pinion gear is actuated simultaneously with the starter motor energizing. There will be no chance to engage the pinion gear with crankshaft gear when the engine is not still. That realizes idle-stop function activated before vehicle completely stop is unachievable by using conventional starter.

| 1. Date                 | October 9 <sup>th</sup> Wednesday                                                 |
|-------------------------|-----------------------------------------------------------------------------------|
| 2. Room.                | 201E                                                                              |
| 3. Time                 | 10:30 - 12:00                                                                     |
| 4. Session              | Advanced Combustion I                                                             |
| 5. Chair (Affiliation), | Koji Yoshida (Nihon University),                                                  |
| co-chair (Affiliation)  | Ken Fosaaen (Fosaaen Technologies, LLC.)                                          |
|                         |                                                                                   |
| 6. Paper No.(JSAE/SAE)  | 20139002 / 2013-32-9002                                                           |
| 7. Paper title          | Effects of Intake System with Swirl and Tumble Valve on the Combustion in a Small |
|                         | Four Stroke Engine                                                                |
| 8. Author (Affiliation) | Hui-Ting Chang, Chih-Wei Huang, Kuan-Hsu Lin, Wen-Cheng Hu (SANYANG               |
|                         | INDUSTRY CO., LTD.)                                                               |

It is well know that better fuel economy, good drivability, lower cost are essential for motorcycle market in Asia. To meet these demands in the meantime is a challenge for engineers. Gas motion in cylinder has significant effects on engine combustion efficiency and stability. A simple gas motion control valve may be a solution to meet these demands. This paper examines the turbulence characteristics, combustion and fuel consumption between swirl valve and tumble valve on an air cooled 150cc four valves scooter engine. Finally, the swirl valve and tumble valve respectively improve the fuel consumption about 12% and 17% in the partial load 4500rpm, 2bar BMEP engine operating condition.

| 6. Paper No.(JSAE/SAE)  | 20139030 / 2013-32-9030                                                                                           |
|-------------------------|-------------------------------------------------------------------------------------------------------------------|
| 7. Paper title          | A Study of the Effects of Varying the Supercharging Pressure and Fuel Octane                                      |
|                         | Number on Spark Ignition Engine Knocking using Spectroscopic Measurement and                                      |
|                         | In-cylinder Visualization                                                                                         |
| 8. Author (Affiliation) | Takashi Ishino, Norikuni Hayakawa, Tomomi Miyasaka, Akira Iijima, Koji Yoshida,<br>Hideo Shoji (Nihon University) |

#### 9. Abstract

Engine downsizing with a turbocharger / supercharger has attracted attention as a way of improving the fuel economy of automotive gasoline engines, but this approach can be frustrated by the occurrence of abnormal combustion. In this study, the factors causing abnormal combustion were investigated using a supercharged, downsized engine that was built by adding a mechanical supercharger. Combustion experiments were conducted in which the fuel octane number and supercharging pressure were varied while keeping the engine speed, equivalence ratio and intake air temperature constant. In the experiments, a visualization technique was applied to photograph combustion in the combustion chamber, absorption spectroscopy was used to investigate the intermediate products of combustion, and the cylinder pressure was measured. The experimental data obtained simultaneously were then analyzed to examine the effects on combustion. The results showed that increasing fuel octane number had effect of moderating combustion by lengthening period from development of a cool flame to occurrence of autoignition. Additionally, increasing the supercharging pressure retarded the onset of the cool flame reactions and advanced the occurrence of autoignition.

| 6. Paper No.(JSAE/SAE)  | 20139144 / 2013-32-9144                                                          |
|-------------------------|----------------------------------------------------------------------------------|
| 7. Paper title          | Influence of High Frequency Ignition on the Combustion and Emission Behaviour of |
|                         | Small Two-Stroke SparkIgnitionEngines                                            |
| 8. Author (Affiliation) | Clemens Hampe, Markus Bertsch, Kai W. Beck, Ulrich Spicher (MOT GmbH)            |
|                         | Steffen Bohne, Georg Rixecker (BorgWarner Beru Systems)                          |

#### 9. Abstract

The two-stroke SI engine is the predominant driving unit in applications that require a high power-to-weight ratio, such as handheld power tools. Regarding the latest regulations in emission limits the main development area is clearly a further reduction of the exhaust emissions. The emissions are directly linked to the combustion processes and the scavenging losses. The optimization of the combustion processes, which represents one of the most challenging fields of research, is still one of the most important keys to enhance the thermal efficiency and reduce exhaust emissions. Regarding future emission regulations for small two-stroke SI engines it is inevitable that the emissions of gases causing the greenhouse effect, like carbon dioxide, need to be reduced. As most small SI engines are carburetted and operate open loop, the mixture formation and the amount of residual gas differs from cycle to cycle [1]. When using conventional ignition systems, the size of the plasma is restricted to the small dimensions of the spark plug gap. In combination with the high flow velocities of small two-stroke SI engines and the variations of the mixture, the cycle to cycle variations are very high. Misfiring and delayed combustion lead to high emissions and poor running smoothness, especially at idle speed. Therefore an alternative ignition system was used to enhance the inflammation behavior with a more stable and faster combustion compared to a conventional ignition. At rated power there were improvements in the engine power and also in the engine efficiency due to a better combustion. At idle the most important improvement was the lean misfire limit which could help the fuel efficiency and the reduction of emissions a lot dependent on the field of application of the engine.

| 1. Date<br>2. Room.                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Room.                                                                                                                                                                                          | October 9 <sup>th</sup> Wednesday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                   | 201A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3. Time                                                                                                                                                                                           | 13:30 - 15:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4. Session                                                                                                                                                                                        | Emissions I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5. Chair (Affiliation),                                                                                                                                                                           | Hiromi Deguchi (SUZUKI MOTOR CORPORATION),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| co-chair (Affiliation)                                                                                                                                                                            | Kai W. Beck (MOT GmbH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                            | 20139058 / 2013-32-9058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7. Paper title                                                                                                                                                                                    | Misfire Diagnostic Strategy for Motorcycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8. Author (Affiliation)                                                                                                                                                                           | Hsien-Chi Tsai, Bo-Yu Gao, Ming-Hao Chiang, Bo-Chiuan Chen, Yuh-Yih Wu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                   | (National Taipei University of Technology)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9. Abstract                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| carried out on motorcycles<br>motorcycles. In this rese<br>characteristics of crankshi<br>investigate the variation o<br>are injected at different en<br>generator is established fo              | OBD) technologies for automobiles have been well-developed; however, it could not be<br>a directly since the operation conditions are quite different between automobiles and<br>earch, we propose a misfire detection strategy for motorcycles based on the<br>aft rotational dynamics. At first, experiments were done on a 125cc motorcycle to<br>f instantaneous crankshaft rotational speed in power stroke while the misfire events<br>gine operation conditions. In order to generate misfire events for the engine, a misfire<br>r providing specific misfire rates. If a misfire takes place at higher engine speed, the<br>peed will decline continuously during power stroke due to higher friction losses |
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                            | 20139050 / 2013-32-9050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7. Paper title                                                                                                                                                                                    | Exhaust Emissions Characteristics of Scooters on the Real World in Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8. Author (Affiliation)                                                                                                                                                                           | Su, Kao-Chun, Chuang, Chih-Wei (Automotive Research & Testing Center) Chen,<br>Hsin-Yi, Pei-Chang Wen, Chen, Hsueh-Heng (Chung-Hua Institution for Economic<br>Research)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9. Abstract                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| installed on vehicles to co<br>paper uses OBS (developed<br>collect instantaneous exha                                                                                                            | y, OBS (On-Board Emission Measurement System) is a technology which can be<br>llect exhaust emissions instantaneously on different road condition and time. This<br>d by ARTC, Automotive Research & Testing Center) installed on testing scooters to<br>aust emissions on typical roads and time periods. The test results can be used to<br>g characteristics of emissions.                                                                                                                                                                                                                                                                                                                                         |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                            | 20139052 / 2013-32-9052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7. Paper title                                                                                                                                                                                    | Feasibility Study of Emission Improvement through Transient Emission<br>Characteristics Analysis for Idle-Stop Motorcycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8. Author (Affiliation)                                                                                                                                                                           | Chao-Lung Chen, Zong-Da Lin (Industrial Technology Research Institute)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                   | Chao Lung Chen, Zong Da Lin (muustriai Technology Research institute)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9. Abstract                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                   | ael economy and CO2 emission for motorcycles, manufacturers have developed and<br>es equipped with idle-stop (also known as stop-start) systems. Some test data have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                   | les may cause 55% more exhaust emissions over the test driving cycle when idle-stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| shown that such motorcycl<br>function is on, and fail to r<br>market sold idle-stop mot<br>exhaust emissions over six                                                                             | neet the functionality expectations of reducing emissions from such motorcycles. Two<br>torcycle types were tested on chassis dynamometer to investigate their transient<br>a different driving cycles with idle-stop function on and off separately. Further more,<br>improvement by adjusting ECU calibration was also evaluated. The results                                                                                                                                                                                                                                                                                                                                                                       |
| shown that such motorcycl<br>function is on, and fail to r<br>market sold idle-stop mot<br>exhaust emissions over six<br>the feasibility of emissions                                             | torcycle types were tested on chassis dynamometer to investigate their transient<br>a different driving cycles with idle-stop function on and off separately. Further more,<br>improvement by adjusting ECU calibration was also evaluated. The results                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| shown that such motorcycl<br>function is on, and fail to r<br>market sold idle-stop mot<br>exhaust emissions over six                                                                             | torcycle types were tested on chassis dynamometer to investigate their transient<br>a different driving cycles with idle-stop function on and off separately. Further more,<br>improvement by adjusting ECU calibration was also evaluated. The results<br>20139055 / 2013-32-9055<br>Feasibility of Using Half Useful Life Mileage Accumulation for Motorcycle                                                                                                                                                                                                                                                                                                                                                       |
| shown that such motorcycl<br>function is on, and fail to r<br>market sold idle-stop mot<br>exhaust emissions over six<br>the feasibility of emissions<br>6. Paper No.(JSAE/SAE)<br>7. Paper title | torcycle types were tested on chassis dynamometer to investigate their transient<br>a different driving cycles with idle-stop function on and off separately. Further more,<br>improvement by adjusting ECU calibration was also evaluated. The results<br>20139055 / 2013-32-9055<br>Feasibility of Using Half Useful Life Mileage Accumulation for Motorcycle<br>Certification Durability Tests in Taiwan                                                                                                                                                                                                                                                                                                           |
| shown that such motorcycl<br>function is on, and fail to r<br>market sold idle-stop mot<br>exhaust emissions over six<br>the feasibility of emissions<br>6. Paper No.(JSAE/SAE)                   | torcycle types were tested on chassis dynamometer to investigate their transient<br>a different driving cycles with idle-stop function on and off separately. Further more,<br>improvement by adjusting ECU calibration was also evaluated. The results<br>20139055 / 2013-32-9055<br>Feasibility of Using Half Useful Life Mileage Accumulation for Motorcycle                                                                                                                                                                                                                                                                                                                                                       |

| 1. Date<br>2. Room.<br>3. Time<br>4. Session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | () of a large O the Wordshamed and                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3. Time<br>4. Session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | October 9 <sup>th</sup> Wednesday                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 4. Session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 201B                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13:30 - 15:30                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HCCI I                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 5. Chair (Affiliation),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yasuo Moriyoshi (Chiba University),                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Co-chair (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Markus Bertsch (MOT GmbH)                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| f Dense Ne (ICAE/CAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20120021 / 2012-22-0021                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20139031 / 2013-32-9031                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A Study of the Effects Varying Compression Ratio and Fuel Octane Number on                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HCCI Engine Combustion using Spectroscopic Octane Number on HCCI Engine                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Combustion using Spectroscopic Measurement                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Akira Terashima, Naoya Ito, Tomoya Tojo, Akira Iijima, Koji Yoshida, Hideo Shoji                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Nihon University)                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ompression Ignition (HCCI) engine was operated under a continuous firing condition                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | combustion in order to obtain fundamental knowledge for suppressing the rapidity of                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ines. Experiments were conducted with a two-stroke engine fitted with a quartz                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | allowed the entire bore area to be visualized. The effect of varying the compression                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ber on HCCI combustion was investigated. In-cylinder spectroscopic measurements                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a ratios of 11:1 and 15:1 using primary reference fuel blends having different octane                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RON. The results showed that varying the compression ratio and fuel octane number                                                                                                                                                                                                                                                                                                                                                                           |  |
| presumably has little effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t on the rapidity of HCCI combustion at the same ignition timing when                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20139054 / 2013-32-9054                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Influence of Fuel Properties on Operational Range and Thermal Efficiency of                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Premixed Diesel Combustion                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qian Xiong, Kazuki Inaba, Hideyuki Ogawa, Gen Shibata (Hokkaido University)                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| combustion was evaluated with an ordinary diesel fuel, a primary reference fuel for cetane numbers, three primary reference fuels for octane numbers, and two normal heptane-toluene blend fuels in a single-cylinder DI diesel engine. The fuel injection timing was set at 25°CA BTDC and the maximum rate of pressure rise was maintained below 1.0 MPa/°CA when lowering the intake oxygen concentration by cooled EGR. With increasing octane numbers, the higher intake oxygen concentration can be used, resulting in higher indicated thermal efficiency due to a higher combustion efficiency. The best thermal efficiency at the optimum intake oxygen                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | inary diesel fuel is lower than with the primary reference fuels with the similar                                                                                                                                                                                                                                                                                                                                                                           |  |
| $(\mathbf{D}, \dots, \mathbf{N})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20120002 / 2012 22 0002                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20139098/2013-32-9098                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A Study of Controlled Auto-Ignition in Small Natural Gas Engines                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hibiki Koga, Toshiro Kiura (Honda R&D Co., Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Research has been conducted on Controlled Auto-Ignition (CAI) engine with natural gas. CAI engine has the potential to be highly efficient and to produce low emissions. CAI engine is potentially applicable to automobile engine. However due to narrow operating range, CAI engine for automobile engine which require various speed and load in real world operation is still remaining at research level. In comparison some natural gas engines for electricity generation only require continuous operation at constant load. There is possibility of efficiency enhancement by CAI combustion which is running same speed at constant load. Since natural gas is primary consisting of methane (CH4), high auto-ignition temperature is required to occur stable auto-ignition. Usually additional intake heat required to keep stable auto-ignition. To keep high |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| enhancement by CAI comb<br>Since natural gas is prima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ry consisting of methane (CH4), high auto-ignition temperature is required to occur                                                                                                                                                                                                                                                                                                                                                                         |  |
| enhancement by CAI comb<br>Since natural gas is prima<br>stable auto-ignition. Usual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ary consisting of methane (CH4), high auto-ignition temperature is required to occur<br>ly additional intake heat required to keep stable auto-ignition. To keep high                                                                                                                                                                                                                                                                                       |  |
| enhancement by CAI comb<br>Since natural gas is prima<br>stable auto-ignition. Usual<br>6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ary consisting of methane (CH4), high auto-ignition temperature is required to occur<br>ly additional intake heat required to keep stable auto-ignition. To keep high<br>20139166 / 2013-32-9166                                                                                                                                                                                                                                                            |  |
| enhancement by CAI comb<br>Since natural gas is prima<br>stable auto-ignition. Usual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rry consisting of methane (CH4), high auto-ignition temperature is required to occur<br>ly additional intake heat required to keep stable auto-ignition. To keep high<br>20139166 / 2013-32-9166<br>Visualization and Spectroscopic Measurement of Knocking Combustion                                                                                                                                                                                      |  |
| enhancement by CAI comb<br>Since natural gas is prima<br>stable auto-ignition. Usual<br>6. Paper No.(JSAE/SAE)<br>7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>ary consisting of methane (CH4), high auto-ignition temperature is required to occur ly additional intake heat required to keep stable auto-ignition. To keep high</li> <li>20139166 / 2013-32-9166</li> <li>Visualization and Spectroscopic Measurement of Knocking Combustion Accompanied by Cylinder Pressure Oscillations in an HCCI Engine</li> </ul>                                                                                         |  |
| enhancement by CAI comb<br>Since natural gas is prima<br>stable auto-ignition. Usual<br>6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>ry consisting of methane (CH4), high auto-ignition temperature is required to occur ly additional intake heat required to keep stable auto-ignition. To keep high</li> <li>20139166 / 2013-32-9166</li> <li>Visualization and Spectroscopic Measurement of Knocking Combustion<br/>Accompanied by Cylinder Pressure Oscillations in an HCCI Engine</li> <li>Akira Iijima, Mitsuaki Tanabe, Koji Yoshida, Hideo Shoji, Naoya Itoh, Akira</li> </ul> |  |
| enhancement by CAI comb<br>Since natural gas is prima<br>stable auto-ignition. Usual<br>6. Paper No.(JSAE/SAE)<br>7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>ary consisting of methane (CH4), high auto-ignition temperature is required to occur ly additional intake heat required to keep stable auto-ignition. To keep high</li> <li>20139166 / 2013-32-9166</li> <li>Visualization and Spectroscopic Measurement of Knocking Combustion Accompanied by Cylinder Pressure Oscillations in an HCCI Engine</li> </ul>                                                                                         |  |

| 2. Room.       201C         3. Time       13:30 · 14         4. Session       Engine C         5. Chair (Affiliation),<br>Co-chair (Affiliation)       Masayosl<br>Co-chair (Affiliation)         6. Paper No.(JSAE/SAE)       20139062         7. Paper title       Developm<br>Engine         8. Author (Affiliation)       Yao-Chui<br>Universite         9. Abstract       Range extender (RE), combined by armanagement strategy of a range extaccording to battery state of charge<br>converted into required operation timanagement system (EMS) is, therestrategy for controlling the engine arengine which is a 125cc four-stroke set         6. Paper No.(JSAE/SAE)       20139042         7. Paper title       Torque C         Continuo       Shun-ich         Ltd.)       Shun-ich         9. Abstract       This paper concerns a torque contrelectronically-controlled continuous velectric motor. In particular, the pape primary sheave position, given refermethod forms a foundation of a hier         motorcycle motion (rear-wheel torque mechanical compliance of the rubbe position to a speed       20139047         6. Paper No.(JSAE/SAE)       20139047         7. Paper title       Construi for Com         8. Author (Affiliation)       Takashi Yue Zho         9. Abstract       In racing world regardless of two-yier formed in accordance with variou vehicle setting executes as well and control more precise; meanwhile, v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Controls II<br>shi Uno (Kawasaki Heavy Industries, Ltd.),<br>n Raatz (Robert Bosch LLC)<br>22 / 2013-32-9062<br>ment of Torque-Based Engine Management System for Range Extender<br>ang Liang, Hsien-Chi Tsai, Yuh-Wen Peng, Yuh-Yih Wu (National Taipei<br>ity of Technology)<br>n engine and a generator, charges the battery on the electric vehicle. Power<br>tended electric vehicle (REEV) will determine the required charging power<br>e (SOC) and driver demands. The charging power demand will be further<br>torque and rotational speed demands from engine. Torque-based engine<br>refore, required to receive the torque command from power management<br>at required torque. This research develops a torque-based EMS for a RE<br>semi-direct injection engine and fueled by liquefied petroleum gas (LPG).<br>2 / 2013-32-9042<br>Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>ni Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid belt |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. Time       13:30 - 14         4. Session       Engine C         5. Chair (Affiliation),<br>Co-chair (Affiliation)       Masayosh<br>Thorsten         6. Paper No.(JSAE/SAE)       20139062         7. Paper title       Developm         8. Author (Affiliation)       Yao-Chuu<br>Universite         9. Abstract       Range extender (RE), combined by an<br>management strategy of a range extender compared operation to<br>management system (EMS) is, there<br>strategy for controlling the engine a<br>engine which is a 125cc four-stroke set         6. Paper No.(JSAE/SAE)       20139042         7. Paper title       Torque C<br>Continuo         8. Author (Affiliation)       Shun-ich<br>Ltd.)         9. Abstract       This paper concerns a torque contre<br>electronically-controlled continuous v<br>electric motor. In particular, the pape<br>primary sheave position, given refer-<br>method forms a foundation of a hier<br>motorcycle motion (rear-wheel torque<br>motion by actuators (engine torque<br>mechanical compliance of the rubbe<br>position to a speed         6. Paper No.(JSAE/SAE)       20139047         7. Paper title       Constru<br>for Com         8. Author (Affiliation)       Takashi<br>Yue Zho         9. Abstract       In racing world regardless of two-v<br>performed in accordance with variou<br>vehicle setting executes as well and<br>control more precise; meanwhile, v         9. Abstract       In racing world regardless of two-v<br>performed in accordance with variou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Controls II<br>shi Uno (Kawasaki Heavy Industries, Ltd.),<br>n Raatz (Robert Bosch LLC)<br>22 / 2013-32-9062<br>ment of Torque-Based Engine Management System for Range Extender<br>ang Liang, Hsien-Chi Tsai, Yuh-Wen Peng, Yuh-Yih Wu (National Taipei<br>ity of Technology)<br>n engine and a generator, charges the battery on the electric vehicle. Power<br>tended electric vehicle (REEV) will determine the required charging power<br>e (SOC) and driver demands. The charging power demand will be further<br>torque and rotational speed demands from engine. Torque-based engine<br>refore, required to receive the torque command from power management<br>at required torque. This research develops a torque-based EMS for a RE<br>semi-direct injection engine and fueled by liquefied petroleum gas (LPG).<br>2 / 2013-32-9042<br>Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>ni Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid belt |
| 4. SessionEngine C5. Chair (Affiliation),<br>Co-chair (Affiliation)Masayosh<br>Thorsten6. Paper No.(JSAE/SAE)201390627. Paper titleDevelopm<br>Engine8. Author (Affiliation)Yao-Chui<br>Universite9. AbstractRange extender (RE), combined by ar<br>management strategy of a range ext<br>according to battery state of charge<br>converted into required operation to<br>management system (EMS) is, there<br>strategy for controlling the engine a<br>engine which is a 125cc four-stroke set6. Paper No.(JSAE/SAE)201390427. Paper titleTorque C<br>Continuo8. Author (Affiliation)Shun-ich<br>Ltd.)9. AbstractThis paper concerns a torque contr<br>electronically-controlled continuous v<br>electric motor. In particular, the pape<br>primary sheave position, given refer-<br>method forms a foundation of a hier<br>motorcycle motion (rear-wheel torque<br>mechanical compliance of the rubbe<br>position to a speed6. Paper No.(JSAE/SAE)201390477. Paper titleConstru<br>for Com<br>s a foundation of a hier<br>motorcycle motion (rear-wheel torque<br>mechanical compliance of the rubbe<br>position to a speed6. Paper No.(JSAE/SAE)201390477. Paper titleConstru<br>for Com<br>s. Author (Affiliation)6. Paper No.(JSAE/SAE)201390477. Paper titleConstru<br>for Com<br>s. Author (Affiliation)6. Paper No.(JSAE/SAE)201390477. Paper titleConstru<br>for Com<br>s. Author (Affiliation)6. Paper No.(JSAE/SAE)201390477. Paper titleConstru<br>for Com<br>s. Author (Affiliation)7. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Controls II<br>shi Uno (Kawasaki Heavy Industries, Ltd.),<br>n Raatz (Robert Bosch LLC)<br>22 / 2013-32-9062<br>ment of Torque-Based Engine Management System for Range Extender<br>ang Liang, Hsien-Chi Tsai, Yuh-Wen Peng, Yuh-Yih Wu (National Taipei<br>ity of Technology)<br>n engine and a generator, charges the battery on the electric vehicle. Power<br>tended electric vehicle (REEV) will determine the required charging power<br>e (SOC) and driver demands. The charging power demand will be further<br>torque and rotational speed demands from engine. Torque-based engine<br>refore, required to receive the torque command from power management<br>at required torque. This research develops a torque-based EMS for a RE<br>semi-direct injection engine and fueled by liquefied petroleum gas (LPG).<br>2 / 2013-32-9042<br>Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>ni Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid belt |
| 5. Chair (Affiliation),<br>Co-chair (Affiliation)       Masayosl<br>Thorsten         6. Paper No.(JSAE/SAE)       20139062         7. Paper title       Developm<br>Engine         8. Author (Affiliation)       Yao-Chui<br>Universit         9. Abstract       Range extender (RE), combined by ar<br>management strategy of a range extra<br>according to battery state of charge<br>converted into required operation t<br>management system (EMS) is, there<br>strategy for controlling the engine a<br>engine which is a 125cc four-stroke set         6. Paper No.(JSAE/SAE)       20139042         7. Paper title       Torque C<br>Continuo         8. Author (Affiliation)       Shun-ich<br>Ltd.)         9. Abstract       Shun-ich<br>Ltd.)         9. Abstract       This paper concerns a torque contr<br>electronically-controlled continuous v<br>electric motor. In particular, the paper<br>primary sheave position, given refer-<br>method forms a foundation of a hier<br>motorcycle motion (rear-wheel torque<br>motion by actuators (engine torque<br>mechanical compliance of the rubber<br>position to a speed         6. Paper No.(JSAE/SAE)       2013904         7. Paper title       Constru<br>for Com         8. Author (Affiliation)       Takashi<br>Yue Zho         9. Abstract       In racing world regardless of two-v<br>performed in accordance with various<br>vehicle setting executes as well and<br>control more precise; meanwhile, v         9. Abstract       In racing world regardless of two-v<br>performed in accordance with various         9. Abstract       In ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | shi Uno (Kawasaki Heavy Industries, Ltd.),<br>n Raatz (Robert Bosch LLC)<br>22 / 2013-32-9062<br>ment of Torque-Based Engine Management System for Range Extender<br>ang Liang, Hsien-Chi Tsai, Yuh-Wen Peng, Yuh-Yih Wu (National Taipei<br>ity of Technology)<br>n engine and a generator, charges the battery on the electric vehicle. Power<br>tended electric vehicle (REEV) will determine the required charging power<br>e (SOC) and driver demands. The charging power demand will be further<br>torque and rotational speed demands from engine. Torque-based engine<br>refore, required to receive the torque command from power management<br>at required torque. This research develops a torque-based EMS for a RE<br>semi-direct injection engine and fueled by liquefied petroleum gas (LPG).<br>2 / 2013-32-9042<br>Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>ni Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid belt                |
| Co-chair (Affiliation)Thorsten6. Paper No.(JSAE/SAE)201390627. Paper titleDevelopm<br>Engine8. Author (Affiliation)Yao-Chur<br>Universite9. AbstractRange extender (RE), combined by ar<br>management strategy of a range extra<br>according to battery state of charge<br>converted into required operation t<br>management system (EMS) is, there<br>strategy for controlling the engine a<br>engine which is a 125cc four-stroke set6. Paper No.(JSAE/SAE)201390427. Paper titleTorque C<br>Continuo8. Author (Affiliation)Shun-ich<br>Ltd.)9. AbstractShun-ich<br>Ltd.)7. Paper concerns a torque contr<br>electronically-controlled continuous v<br>electric motor. In particular, the paper<br>primary sheave position, given refer-<br>method forms a foundation of a hier<br>motorcycle motion (rear-wheel torqu<br>motion by actuators (engine torque<br>mechanical compliance of the rubbe<br>position to a speed6. Paper No.(JSAE/SAE)201390477. Paper titleConstru<br>for Com8. Author (Affiliation)Takashi<br>Yue Zho9. AbstractIn racing world regardless of two-<br>performed in accordance with variou<br>vehicle setting executes as well and<br>control more precise; meanwhile, v<br>Therefore, whenever a new competiti<br>be updated according to vehicle contr<br>required for vehicle setting is packa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n Raatz (Robert Bosch LLC)<br>2 / 2013-32-9062<br>ment of Torque-Based Engine Management System for Range Extender<br>ang Liang, Hsien-Chi Tsai, Yuh-Wen Peng, Yuh-Yih Wu (National Taipei<br>ity of Technology)<br>n engine and a generator, charges the battery on the electric vehicle. Power<br>tended electric vehicle (REEV) will determine the required charging power<br>terded electric vehicle (REEV) will determine the required charging power<br>torque and rotational speed demands from engine. Torque-based engine<br>refore, required to receive the torque command from power management<br>at required torque. This research develops a torque-based EMS for a RE<br>semi-direct injection engine and fueled by liquefied petroleum gas (LPG).<br>2 / 2013-32-9042<br>Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>ni Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid belt                                                           |
| 6. Paper No.(JSAE/SAE)       20139062         7. Paper title       Developm         8. Author (Affiliation)       Yao-Chur<br>Universite         9. Abstract       Range extender (RE), combined by an<br>management strategy of a range extr<br>according to battery state of charge<br>converted into required operation to<br>management system (EMS) is, there<br>strategy for controlling the engine at<br>engine which is a 125cc four-stroke set         6. Paper No.(JSAE/SAE)       20139042         7. Paper title       Torque C<br>Continuo         8. Author (Affiliation)       Shun-ich<br>Ltd.)         9. Abstract       This paper concerns a torque contr<br>electronically-controlled continuous v<br>electric motor. In particular, the pape<br>primary sheave position, given refere<br>method forms a foundation of a hier<br>motorcycle motion (rear-wheel torque<br>motion by actuators (engine torque<br>mechanical compliance of the rubbe<br>position to a speed         6. Paper No.(JSAE/SAE)       20139047         7. Paper title       Construe<br>for Com         8. Author (Affiliation)       Takashi<br>Yue Zho         9. Abstract       In racing world regardless of two-<br>performed in accordance with various<br>vehicle setting executes as well and<br>control more precise; meanwhile, v<br>Therefore, whenever a new competiti<br>be updated according to vehicle contr<br>required for vehicle setting is packar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 / 2013-32-9062<br>ment of Torque-Based Engine Management System for Range Extender<br>ing Liang, Hsien-Chi Tsai, Yuh-Wen Peng, Yuh-Yih Wu (National Taipei<br>ity of Technology)<br>n engine and a generator, charges the battery on the electric vehicle. Power<br>tended electric vehicle (REEV) will determine the required charging power<br>e (SOC) and driver demands. The charging power demand will be further<br>torque and rotational speed demands from engine. Torque-based engine<br>refore, required to receive the torque command from power management<br>at required torque. This research develops a torque-based EMS for a RE<br>semi-direct injection engine and fueled by liquefied petroleum gas (LPG).<br>2 / 2013-32-9042<br>Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>ni Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid belt                                                                                             |
| 7. Paper title       Developm         8. Author (Affiliation)       Yao-Chur<br>Universite         9. Abstract       Range extender (RE), combined by an<br>management strategy of a range extender operation t<br>management strategy of a range extender operation t<br>management system (EMS) is, there<br>strategy for controlling the engine a<br>engine which is a 125cc four-stroke set         6. Paper No.(JSAE/SAE)       20139042         7. Paper title       Torque C<br>Continuo         8. Author (Affiliation)       Shun-ich<br>Ltd.)         9. Abstract       Shun-ich<br>Ltd.)         7. Paper title       Torque C<br>Continuo         8. Author (Affiliation)       Shun-ich<br>Ltd.)         9. Abstract       This paper concerns a torque contr<br>electronically-controlled continuous v<br>electric motor. In particular, the paper<br>primary sheave position, given refere<br>method forms a foundation of a hier<br>motorcycle motion (rear-wheel torque<br>motion by actuators (engine torque<br>mechanical compliance of the rubbe<br>position to a speed         6. Paper No.(JSAE/SAE)       2013904         7. Paper title       Constru<br>for Com         8. Author (Affiliation)       Takashi<br>Yue Zho         9. Abstract       In racing world regardless of two-v<br>performed in accordance with variou<br>vehicle setting executes as well and<br>control more precise; meanwhile, v<br>Therefore, whenever a new competiti-<br>be updated according to vehicle contr<br>required for vehicle setting is packar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ment of Torque-Based Engine Management System for Range Extender<br>ing Liang, Hsien-Chi Tsai, Yuh-Wen Peng, Yuh-Yih Wu (National Taipei<br>ity of Technology)<br>n engine and a generator, charges the battery on the electric vehicle. Power<br>tended electric vehicle (REEV) will determine the required charging power<br>e (SOC) and driver demands. The charging power demand will be further<br>torque and rotational speed demands from engine. Torque-based engine<br>refore, required to receive the torque command from power management<br>at required torque. This research develops a torque-based EMS for a RF<br>semi-direct injection engine and fueled by liquefied petroleum gas (LPG).<br>2 / 2013-32-9042<br>Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>ni Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid belt                                                                                                                 |
| Engine8. Author (Affiliation)Yao-Chur<br>Universit9. AbstractRange extender (RE), combined by an<br>management strategy of a range ext<br>according to battery state of charge<br>converted into required operation t<br>management system (EMS) is, there<br>strategy for controlling the engine a<br>engine which is a 125cc four-stroke set6. Paper No.(JSAE/SAE)201390427. Paper titleTorque C<br>Continuo8. Author (Affiliation)Shun-ich<br>Ltd.)9. AbstractShun-ich<br>Ltd.)7. Paper titleTorque controlled continuous v<br>electric motor. In particular, the pape<br>primary sheave position, given refer-<br>method forms a foundation of a hier<br>motorcycle motion (rear-wheel torque<br>motion by actuators (engine torque<br>mechanical compliance of the rubber<br>position to a speed6. Paper No.(JSAE/SAE)201390477. Paper titleConstru<br>for Com6. Paper No.(JSAE/SAE)201390477. Paper titleConstru<br>for Com6. Paper No.(JSAE/SAE)201390477. Paper titleConstru<br>for Com8. Author (Affiliation)Takashi<br>Yue Zho9. AbstractIn racing world regardless of two-v<br>performed in accordance with variou<br>vehicle setting executes as well and<br>control more precise; meanwhile, v<br>Therefore, whenever a new competiti-<br>be updated according to vehicle contr<br>required for vehicle setting is packar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ing Liang, Hsien-Chi Tsai, Yuh-Wen Peng, Yuh-Yih Wu (National Taipei<br>ity of Technology)<br>In engine and a generator, charges the battery on the electric vehicle. Power<br>tended electric vehicle (REEV) will determine the required charging power<br>e (SOC) and driver demands. The charging power demand will be further<br>torque and rotational speed demands from engine. Torque-based engine<br>refore, required to receive the torque command from power management<br>at required torque. This research develops a torque-based EMS for a RF<br>semi-direct injection engine and fueled by liquefied petroleum gas (LPG).<br>2 / 2013-32-9042<br>Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>in Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid belt                                                                                                                                                                                    |
| 8. Author (Affiliation)       Yao-Chui<br>Universit         9. Abstract       Range extender (RE), combined by armanagement strategy of a range extraccording to battery state of charge converted into required operation to management system (EMS) is, there strategy for controlling the engine arengine which is a 125cc four-stroke set         6. Paper No.(JSAE/SAE)       20139042         7. Paper title       Torque Continuous         8. Author (Affiliation)       Shun-ich Ltd.)         9. Abstract       This paper concerns a torque contrelectronically-controlled continuous velectric motor. In particular, the paper primary sheave position, given referemethod forms a foundation of a hier motorcycle motion (rear-wheel torque mechanical compliance of the rubber position to a speed         6. Paper No.(JSAE/SAE)       20139042         7. Paper title       Construe for Continuous velectric motor. In particular, the paper primary sheave position, given referemethod forms a foundation of a hier motorcycle motion (rear-wheel torque mechanical compliance of the rubber position to a speed         6. Paper No.(JSAE/SAE)       2013904         7. Paper title       Construe for Common state to the rubber position to a speed         6. Paper No.(JSAE/SAE)       2013904         7. Paper title       Construe for Common state to the rubber position to a speed         6. Paper No.(JSAE/SAE)       2013904         7. Paper title       Construe for Common state to the rubber position to a speed         6. Paper N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ity of Technology)<br>In engine and a generator, charges the battery on the electric vehicle. Power<br>tended electric vehicle (REEV) will determine the required charging power<br>e (SOC) and driver demands. The charging power demand will be further<br>torque and rotational speed demands from engine. Torque-based engine<br>refore, required to receive the torque command from power managemen<br>at required torque. This research develops a torque-based EMS for a RF<br>semi-direct injection engine and fueled by liquefied petroleum gas (LPG).<br>2 / 2013-32-9042<br>Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>hi Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid belt                                                                                                                                                                                                                                                             |
| Universit <i>Abstract</i> Range extender (RE), combined by ar<br>management strategy of a range ext<br>according to battery state of charge<br>converted into required operation t<br>management system (EMS) is, there<br>strategy for controlling the engine a<br>engine which is a 125cc four-stroke set6. Paper No.(JSAE/SAE)201390427. Paper titleTorque C<br>Continuo8. Author (Affiliation)Shun-ich<br>Ltd.)9. AbstractShun-ich<br>Ltd.)7. Paper titleTorque controlled continuous v<br>electric motor. In particular, the pape<br>primary sheave position, given refer<br>method forms a foundation of a hier<br>motorcycle motion (rear-wheel torque<br>motion by actuators (engine torque<br>mechanical compliance of the rubbe)<br>position to a speed6. Paper No.(JSAE/SAE)201390427. Paper titleConstru<br>for Com6. Paper No.(JSAE/SAE)20139047. Paper titleConstru<br>for Com6. Paper No.(JSAE/SAE)20139047. Paper titleConstru<br>for Com8. Author (Affiliation)Takashi<br>Yue Zho9. AbstractIn racing world regardless of two-v<br>performed in accordance with variou<br>vehicle setting executes as well and<br>control more precise; meanwhile, v<br>Therefore, whenever a new competitivities<br>be updated according to vehicle contri<br>required for vehicle setting is packar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ity of Technology)<br>In engine and a generator, charges the battery on the electric vehicle. Power<br>tended electric vehicle (REEV) will determine the required charging power<br>e (SOC) and driver demands. The charging power demand will be further<br>torque and rotational speed demands from engine. Torque-based engine<br>refore, required to receive the torque command from power managemen<br>at required torque. This research develops a torque-based EMS for a RF<br>semi-direct injection engine and fueled by liquefied petroleum gas (LPG).<br>2 / 2013-32-9042<br>Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>hi Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid belt                                                                                                                                                                                                                                                             |
| Range extender (RE), combined by ar<br>management strategy of a range extra<br>according to battery state of charge<br>converted into required operation t<br>management system (EMS) is, there<br>strategy for controlling the engine a<br>engine which is a 125cc four-stroke set6. Paper No.(JSAE/SAE)20139042<br>7. Paper titleTorque C<br>Continuous<br>8. Author (Affiliation)8. Author (Affiliation)Shun-ich<br>Ltd.)9. AbstractThis paper concerns a torque contribution of a hier<br>motorcycle motion (rear-wheel torque<br>motion by actuators (engine torque<br>mechanical compliance of the rubbet<br>position to a speed6. Paper No.(JSAE/SAE)20139042<br>201390447. Paper titleConstru<br>for Com6. Paper No.(JSAE/SAE)20139044<br>20139047. Paper titleConstru<br>for Com6. Paper No.(JSAE/SAE)20139044<br>20139047. Paper titleConstru<br>for Com8. Author (Affiliation)Takashi<br>Yue Zho9. AbstractIn racing world regardless of two-v<br>performed in accordance with variou<br>vehicle setting executes as well and<br>control more precise; meanwhile, v<br>Therefore, whenever a new competiti<br>be updated according to vehicle contri<br>required for vehicle setting is packa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tended electric vehicle (REEV) will determine the required charging powe<br>e (SOC) and driver demands. The charging power demand will be furthe<br>torque and rotational speed demands from engine. Torque-based engine<br>refore, required to receive the torque command from power managemen<br>at required torque. This research develops a torque-based EMS for a RI<br>semi-direct injection engine and fueled by liquefied petroleum gas (LPG).<br>2 / 2013-32-9042<br>Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>ni Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid bel                                                                                                                                                                                                                                                                                                                                                                       |
| management strategy of a range extra<br>according to battery state of charge<br>converted into required operation t<br>management system (EMS) is, there<br>strategy for controlling the engine a<br>engine which is a 125cc four-stroke set<br>6. Paper No.(JSAE/SAE) 20139042<br>7. Paper title Torque C<br>Continuo<br>8. Author (Affiliation) Shun-ich<br>Ltd.)<br>0. Abstract<br>This paper concerns a torque contre<br>electronically-controlled continuous v<br>electric motor. In particular, the pape<br>primary sheave position, given refer-<br>method forms a foundation of a hier<br>motorcycle motion (rear-wheel torque<br>motion by actuators (engine torque<br>mechanical compliance of the rubbe<br>position to a speed<br>6. Paper No.(JSAE/SAE) 2013904<br>7. Paper title Constru<br>for Com<br>8. Author (Affiliation) Takashi<br>Yue Zho<br>0. Abstract<br>In racing world regardless of two-<br>performed in accordance with variou<br>vehicle setting executes as well and<br>control more precise; meanwhile, v<br>Therefore, whenever a new competiti<br>be updated according to vehicle contre<br>required for vehicle setting is packa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tended electric vehicle (REEV) will determine the required charging power<br>e (SOC) and driver demands. The charging power demand will be further<br>torque and rotational speed demands from engine. Torque-based engine<br>refore, required to receive the torque command from power managemen<br>at required torque. This research develops a torque-based EMS for a RI<br>semi-direct injection engine and fueled by liquefied petroleum gas (LPG).<br>2 / 2013-32-9042<br>Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>ni Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid belt                                                                                                                                                                                                                                                                                                                                                                    |
| 7. Paper title       Torque C         8. Author (Affiliation)       Shun-ich         1. Ltd.)       Shun-ich         2. Abstract       This paper concerns a torque contr         electronically-controlled continuous v       electric motor. In particular, the paper         primary sheave position, given reference       method forms a foundation of a hier         motorcycle motion (rear-wheel torque       motorcycle motion (rear-wheel torque         motion by actuators (engine torque       mechanical compliance of the rubbe         position to a speed       2013904         7. Paper title       Constru         6. Paper No.(JSAE/SAE)       2013904         7. Paper title       Constru         for Com       8. Author (Affiliation)       Takashi         Yue Zho       9. Abstract       In racing world regardless of two-v         performed in accordance with variou       vehicle setting executes as well and         control more precise; meanwhile, v       Therefore, whenever a new competitive         be updated according to vehicle contr       required for vehicle setting is packar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>hi Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid bel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7. Paper title       Torque C         8. Author (Affiliation)       Shun-ich         1. Ltd.)       Shun-ich         2. Abstract       This paper concerns a torque contr         electronically-controlled continuous v       electric motor. In particular, the paper         primary sheave position, given reference       method forms a foundation of a hier         motorcycle motion (rear-wheel torque       motorcycle motion (rear-wheel torque         motorcycle motion (rear-wheel torque       mechanical compliance of the rubbe         position to a speed       2013904         7. Paper title       Constru         6. Paper No.(JSAE/SAE)       2013904         7. Paper title       Constru         for Com       8. Author (Affiliation)       Takashi         Yue Zho       Abstract       In racing world regardless of two-v         performed in accordance with variou       vehicle setting executes as well and         control more precise; meanwhile, v       Therefore, whenever a new competitive         be updated according to vehicle contr       required for vehicle setting is packa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt<br>ous Variable Transmission<br>hi Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid bel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Continuo8. Author (Affiliation)Shun-ich<br>Ltd.)9. AbstractThis paper concerns a torque contr<br>electronically-controlled continuous v<br>electric motor. In particular, the pape<br>primary sheave position, given refer-<br>method forms a foundation of a hier<br>motorcycle motion (rear-wheel torque<br>mechanical compliance of the rubbe<br>position to a speed6. Paper No.(JSAE/SAE)20139047. Paper titleConstru<br>for Com8. Author (Affiliation)Takashi<br>Yue Zho9. AbstractIn racing world regardless of two-<br>performed in accordance with variou<br>vehicle setting executes as well and<br>control more precise; meanwhile, v<br>Therefore, whenever a new competiti<br>be updated according to vehicle contr<br>required for vehicle setting is packa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ous Variable Transmission<br>ni Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid bel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8. Author (Affiliation)       Shun-ich<br>Ltd.)         9. Abstract       This paper concerns a torque contrelectronically-controlled continuous velectric motor. In particular, the paper primary sheave position, given referent method forms a foundation of a hier motorcycle motion (rear-wheel torque motion by actuators (engine torque mechanical compliance of the rubber position to a speed         6. Paper No.(JSAE/SAE)       2013904         7. Paper title       Construit for Com         8. Author (Affiliation)       Takashi Yue Zho         9. Abstract       In racing world regardless of two-vertice setting executes as well and control more precise; meanwhile, vertice to the precise of the rubber precise of the rubber position for the precise position for the rubber position to a speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ni Akama, Yasunori Murayama, and Shigeho Sakoda (Yamaha Motor Co.,<br>rol of a rear wheel of a motorcycle equipped with a rubber/aramid bel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Abstract         This paper concerns a torque contr         electronically-controlled continuous v         electric motor. In particular, the pape         primary sheave position, given refermethod forms a foundation of a hier         motorcycle motion (rear-wheel torque         motorcycle motion (rear-wheel torque         mechanical compliance of the rubber         position to a speed         6. Paper No.(JSAE/SAE)       2013904         7. Paper title       Constru         for Com       8. Author (Affiliation)         Takashi       Yue Zho         O. Abstract       In racing world regardless of two-v         performed in accordance with variou       vehicle setting executes as well and         control more precise; meanwhile, v       Therefore, whenever a new competitive         be updated according to vehicle contr       required for vehicle setting is packar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| This paper concerns a torque contr         electronically-controlled continuous v         electric motor. In particular, the paper         primary sheave position, given referrence         method forms a foundation of a hier         motorcycle motion (rear-wheel torque         motion by actuators (engine torque         mechanical compliance of the rubber         position to a speed         6. Paper No.(JSAE/SAE)       2013904         7. Paper title       Constru         for Com       Kathor (Affiliation)         8. Author (Affiliation)       Takashi         Yue Zho       D. Abstract         In racing world regardless of two-v       performed in accordance with variou         vehicle setting executes as well and       control more precise; meanwhile, v         Therefore, whenever a new competitive       be updated according to vehicle contr         required for vehicle setting is packar       seckar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7. Paper title       Constrution         8. Author (Affiliation)       Takashi Yue Zho         9. Abstract       Takashi Yue Zho         10. Abstract       In racing world regardless of two-vertices as well and control more precise; meanwhile, vertice setting executes as well and control more precise; meanwhile, vertice the updated according to vehicle contribution required for vehicle setting is packation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ue and engine rotational velocity) and a lower control layer realizes the<br>and primary sheave position). Difficulties of the control are due to larger/aramid belt, which leads to an inevitable lag from the primary sheave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7. Paper title       Constrution         8. Author (Affiliation)       Takashi Yue Zhoo         9. Abstract       Takashi Yue Zhoo         9. Abstract       Takashi Yue Zhoo         9. Abstract       Therefore with variou vehicle setting executes as well and control more precise; meanwhile, venture the updated according to vehicle contrarequired for vehicle setting is packat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| for Com.<br>8. Author (Affiliation)<br>9. Abstract<br>In racing world regardless of two-v<br>performed in accordance with variou<br>vehicle setting executes as well and<br>control more precise; meanwhile, v<br>Therefore, whenever a new competitive<br>be updated according to vehicle contriver<br>required for vehicle setting is packation of the setting is packat | 40 / 2013-32-9040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8. Author (Affiliation) Takashi<br>Yue Zho<br>D. Abstract<br>In racing world regardless of two-v<br>performed in accordance with variou<br>vehicle setting executes as well and<br>control more precise; meanwhile, v<br>Therefore, whenever a new competitive<br>be updated according to vehicle contriver<br>required for vehicle setting is packation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uction of Data-setting Configuration Using Prescribed Template and Profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Abstract<br>In racing world regardless of two-<br>performed in accordance with variou<br>vehicle setting executes as well and<br>control more precise; meanwhile, v<br>Therefore, whenever a new competiti-<br>be updated according to vehicle contr<br>required for vehicle setting is packa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | npetition Motorcycles<br>i Suda, Koichi Tsunokawa, Satoru Kanno and Xi Sun (Keihin Corporation)<br>or (Keihin B&D Ching Co., 144)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| In racing world regardless of two-<br>performed in accordance with variou<br>vehicle setting executes as well and<br>control more precise; meanwhile, v<br>Therefore, whenever a new competiti-<br>be updated according to vehicle contr<br>required for vehicle setting is packa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ou (Keihin R&D China Co., Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| performed in accordance with variou<br>vehicle setting executes as well and<br>control more precise; meanwhile, v<br>Therefore, whenever a new competiti-<br>be updated according to vehicle contr<br>required for vehicle setting is packa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | wheeled vehicle (motorcycle) or four-wheeled vehicle, vehicle setting i<br>us race conditions. From the age of carburetor till even now ECU is used<br>a plays an important role. Changeover to electronic control makes vehicl<br>vehicle control technique to become complicated is occurring every day<br>ion vehicle is developed, tool required for vehicle setting is also necessary t<br>rol technique implemented. Setting-method till now is that, all information<br>aged in tool, thereby tool and vehicle have always been a combination of<br>er's vehicle development, tool development / update becomes a burden and.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6. Paper No.(JSAE/SAE) 2013906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66 / 2013-32-9066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < Canceled >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| 1. Date                 | October9 <sup>th</sup> Wednesday              |
|-------------------------|-----------------------------------------------|
| 2. Room.                | 201D                                          |
| 3. Time                 | 13:30 - 15:30                                 |
| 4. Session              | Hybrids, Electric Drives & Fuel Cells         |
| 5. Chair (Affiliation), | Yasuyuki Muramatsu (Yamaha Motor Co., Ltd.),  |
| co-chair (Affiliation)  | Glenn Bower (University of Wisconsin-Madison) |

| 6. Paper No.(JSAE/SAE)  | 20139119 / 2013-32-9119                                                      |
|-------------------------|------------------------------------------------------------------------------|
| 7. Paper title          | The Development of Non-contact Torque and Angle Sensor for Intelligent Power |
|                         | Assist System                                                                |
| 8. Author (Affiliation) | Chau-Chih Yu, Jin-Yan Hsu, Tsung-Hua Hsu (Automotive Research & Testing      |
|                         | Center)                                                                      |

In recent years, many attentions have been paid on global environmental protection and energy saving; more people, therefore, have chosen bikes for commuting to work or school. For longer distance transportation and less effort, electric power assist bikes have re-entered the market. Due to regulation of some countries, electric bikes that must bepedaled were developed. These machines utilize the pedals as the dominant form of propulsion, with the motor used only to give extra assistance when needed for hills or long journeys. The ratio of electric power to human power may affect the riding feel. As a result, a torque sensor, which detects the pedaling force, is crucial in this application.

This paper proposes a new design of torque sensor by way of twist angle measurement. It is composed of ...

| 6. Paper No.(JSAE/SAE)  | 20139045 / 2013-32-9045                                                        |
|-------------------------|--------------------------------------------------------------------------------|
| 7. Paper title          | Development of Torque Sensor with Nickel-iron Alloy Plating for Pedal-equipped |
|                         | Electric Vehicles                                                              |
| 8. Author (Affiliation) | Kentaro Ikegami (Honda R&D Co., Ltd.)                                          |
| 0 Abstract              |                                                                                |

# 9. Abstract

This paper describes the development of non-contacting detection type torque sensor that realizes a small lost motion with light weight and low cost.

Pedal-equipped electric vehicles are becoming popular in recent years. In those vehicles, torque sensors are usually necessary for measuring the pedaling force to determine the motor torque.

We applied an integrated sensing structure and a non-contacting scheme utilizing inverse-magnetostrictive material to minimize the lost motions. As for the sensing material, nickel-iron alloy plating was used to obtain a wide dynamic range. In the tests using the actual structure, the output linearity deterioration occurred because of the strain distribution dispersion produced by the ratchet drive structure. Therefore, the effect of this ...

| 6. Paper No.(JSAE/SAE)  | 20139120 / 2013-32-9120                                                      |
|-------------------------|------------------------------------------------------------------------------|
| 7. Paper title          | Study of Different Arrangement of Magnets for the Purpose of Reducing Magnet |
|                         | Usage in Designing an Integrated Starter/Generator for Hybrid Vehicles       |
| 8. Author (Affiliation) | Kai-Fan Hsueh, Jung-Ho Cheng (National Taiwan University)                    |
|                         | Yi-Shen Chen, Andrew Lu(CEC Engine Co. Ltd)                                  |

#### 9. Abstract

Due to the fluctuating price of rare earth raw material in recent years, the manufacturing cost for high performance motors used in electric or hybrid vehicles becomes very difficult to control. Therefore, the automotive industries have been actively performing research and development to reduce the dependence of the rare earth magnet. The purpose of this paper is to investigate the effects of magnet arrangements at the same time to improve the magnetic circuit by increasing the reluctance torque while lowering the alignment torque in a permanent magnet synchronous motor. As a result, the amount of expensive NdFeB magnet is substantially reduced by adopting a V-shape arrangement.

| 7. Paper title         Two-speed Automatic Transmissions of Electric Scooters           8. Author (Affiliation)         Kuo-ching Chen, Keng-tso Chuang, Han-bsueh Liu, Ching-ya Chen (CHINA) | 6. Paper No.(JSAE/SAE) | 20139087 / 2013-32-9087                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------|
| 8 Author (Affiliation) Kuo-ching Chen Keng-tso Chuang Han-bsueh Liu Ching-ya Chen (CHINA                                                                                                      | 7. Paper title         | Two-speed Automatic Transmissions of Electric Scooters                                  |
| MOTOR CORPORATION)                                                                                                                                                                            |                        | Kuo-ching Chen, Keng-tso Chuang, Han-hsueh Liu, Ching-ya Chen (CHINA MOTOR CORPORATION) |

#### 9. Abstract

To effectively reduce the greenhouse gas emission, electric scooters have been developed and become a booming green transportation around the world. Most of these electric scooters possess a fixed reduction ratio in the powertrain, which makes them far from satisfactory--you can't have low cost, high performance and efficiency at the same time. However, as a silver bullet, one kind of two-speed transmission is developed.

The two-speed transmission will shift automatically according to speed and throttle. An exquisite design with of a one-way clutch as well as a synchronizer effectively reduces the inevitable shocks while shifting. The electric scooter with such two-speed transmission will be launched on the market in 2013. This product ...

|                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Date                                                                                                                                                                                                                                                                                                                         | October 9 <sup>th</sup> Wednesday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2. Room.                                                                                                                                                                                                                                                                                                                        | 201E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. Time                                                                                                                                                                                                                                                                                                                         | 13:30 - 15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4. Session                                                                                                                                                                                                                                                                                                                      | Advanced Combustion II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5. Chair (Affiliation),                                                                                                                                                                                                                                                                                                         | Koji Yoshida (Nihon University),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| co-chair (Affiliation)                                                                                                                                                                                                                                                                                                          | Ken Fosaaen (Fosaaen Technologies, LLC.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                          | 20139116 / 2013-32-9116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7. Paper title                                                                                                                                                                                                                                                                                                                  | Small Kerosene Droplet Evaporation Near Butane Diffusion Flame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                         | Hiroshi Enomoto, Shogo Kunioka, Lukas Kano Mangalla, Noboru Hieda (Kanazawa University)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9. Abstract                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| temperature around 12001<br>(30 µm-diameter) in to ho<br>wall injector. Once the dro<br>droplet surface was record<br>The images captured in<br>vaporization of droplet. To<br>droplet released from inject<br>background gas. The resu<br>droplet temperature and d                                                            | herated using butane flame. Microflame from butane can reach the maximum K at tip of outer glass. Single droplet of kerosene was injected by a small injector tube t environment. Droplet of kerosene was released by attachment of piezo actuator on oplet is exposed to the hot atmosphere of micro flame, the temporal regression of the led. Droplet diameter was observed by CCD camera with strobe light flash at 180ns. this experiment were analyzed by post-processing software to determine the emperature of background gas was measured by K-type thermocouple and speed of tor was also measured to investigate the effect of relative velocity between droplet and all shows that the linear changing point of droplet diameter is started at different lifferent initial velocity. For further movement to high temperatures environment the t is almost linear with time.                                                                                                                                                                                                                                                                           |
| vaporization rate of drople                                                                                                                                                                                                                                                                                                     | t is annost intear with time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                          | 20139117 / 2013-32-9117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7. Paper title                                                                                                                                                                                                                                                                                                                  | Observation of Kerosene Droplet Evaporation under High Pressure and High<br>Temperature Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                         | Hiroshi Enomoto, Shunsuke Sawasaki, Kosuke Nishioka, Lukas Kano Mangalla<br>(Kanazawa University)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9. Abstract                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ANSYS fluent code. The<br>environment was consider<br>simulation was discretized<br>implicit scheme of compre-<br>expressed for gas material<br>Peng-Robinson was express<br>by the second order upwin<br>model was used to solve to<br>behavior were found to be<br>pressure environment. It of<br>pressure condition, however | und gas of the droplet vaporization was concerned and simulated numerically using<br>new type, engine-like, condition of high pressure chamber and high temperature<br>red to conduct experiment on kerosene droplet evaporation. 2D geometry of domain<br>d in the very fine quadrilateral meshes. The numerical approach was solved using<br>ressible gas solver (density based). Temperature dependent properties of air are<br>l properties. As the study concerning on high pressure condition the equation state of<br>seed in simulation. Governing equations of mass, momentum and energy were solved<br>nd for flow, turbulent kinetic energy and turbulent dissipation rate. Standard k- $\varepsilon$<br>turbulence flow in the spatial discretization. The effects of the non-ideal gas phase<br>e important for prediction background gas of droplet vaporization especially in high<br>can be concluded that we can predict the environment of high temperature and high<br>ver the quantitative measurement of droplet evaporation is still facing problem on<br>ronmental conditions has significant effect on droplet behavior inside the chamber. |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                          | 20139123 / 2013-32-9123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7. Paper title                                                                                                                                                                                                                                                                                                                  | Behavior of Small Fuel Droplet near Butane Diffusion Flame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                         | Hiroshi Enomoto, Shogo Kunioka, Noboru Hieda (Kanazawa University).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9. Abstract                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                 | avior near diffusion flame was observed. Single droplet was created by thin glass tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

and piezo device which pushes the side of glass tube. Dispersions of droplets location near diffusive flame were compared to droplets with no flame condition. CCD camera, strobe light with 180nsec flash time and lens of ten magnification were used for observation. Droplet pictures were taken with resolution of 0.46um/pix. As a result, droplets near diffusive flame tend to increase its dispersion of location as approaching tip of the flame. Stefan flow caused by evaporation and turbulence outer flow can be thought as causes.

| 1. Date<br>2. Room.                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2. Room.                                                                                                                                                                                                                                                                      | October 10 <sup>th</sup> Thursday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                               | 201A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 3. Time                                                                                                                                                                                                                                                                       | 8:30 - 10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 4. Session                                                                                                                                                                                                                                                                    | Emission II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 5. Chair (Affiliation),                                                                                                                                                                                                                                                       | Hiromi Deguchi (SUZUKI MOTOR CORPORATION),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| co-chair (Affiliation)                                                                                                                                                                                                                                                        | Kai W. Beck (MOT GmbH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                        | 20139057 / 2013-32-9057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 7. Paper title                                                                                                                                                                                                                                                                | New VM R750 engine family: a different approach to reach the emission limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                       | Emilio Bertoni, Alessandro Mazza, Carlo Ricci (VM Motori), Lorenzo Pace, Manuel<br>Presti (Emitec G.m.b.H.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 9. Abstract                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| of the art technology for m<br>matter reduction is a cruck<br>At the present stage there<br>of very high fuel injection<br>technology with active reg<br>the pros and cons of each<br>followed by a partial-flow f<br>discussed in this paper alo<br>short overview of the PM | ff Road Engines is forcing the industry to review the engine design, introducing state<br>nany components and tailored exhaust gas after treatment architectures. Particulate<br>ial issue to be addressed having an influence on overall engine performance and cost.<br>is not a unilateral solution in the industry, as some manufacturers use a combination<br>a pressure and very efficient DOC, while others rely on the automotive derived DPF<br>generation or SCR-only technology to reach EU Stage IV and US Tier4f. Considering<br>in solution, VM Motori decided to adopt an innovative solution consisting in a DOC<br>filter PM-Metalit® for the R750 Engine family. The advantages of this solution will be<br>ong with the application work that has been carried over to reach the emission limit. A<br>Metalit technology will be given together with a comprehensive explanation of the<br>t allow a constant and maintenance-free PM reduction. Moreover, tests results to<br>ns will be discussed. |  |  |
|                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                        | 20139053 / 2013-32-9053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 7. Paper title                                                                                                                                                                                                                                                                | Durable Catalyst Formulations For Four-stroke Small Engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                       | W. Boll, M. Bonifer, R. Kiemel, U. Endruschat (Heraeus Precious Metals GmbH &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                                                                                                                               | Co. KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 9. Abstract                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| the overall washcoat arc<br>parameters of all investi<br>experiments using a synth<br>the catalyst activity in re                                                                                                                                                             | carbureted four-stroke multipurpose small engine is presented. The catalyst activity is evaluated with regard to<br>the overall washcoat architecture in terms of i.e. implementation of oxygen storage material. The basic<br>parameters of all investigated fresh and thermally aged catalyst formulations are evaluated by light-off<br>experiments using a synthetic gas test bench. In addition, engine test bench experiments are conducted to prove<br>the catalyst activity in real application conditions. Finally a set of promising formulations are successfully<br>submitted to a 25 hours durability test run with regard to the EPA III class I regulation.                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                                               | 20139064 / 2013-32-9064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| C Domon No (ICAE/CAE)                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 6. Paper No.(JSAE/SAE)<br>7. Paper title                                                                                                                                                                                                                                      | Drive Cycle Fuel Economy and Engine-Out Emissions Evaluation Using an<br>Opposed-Piston Sleeve-Valve Engine with Lean Operation and Ignition Delay for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                               | Drive Cycle Fuel Economy and Engine-Out Emissions Evaluation Using an<br>Opposed-Piston Sleeve-Valve Engine with Lean Operation and Ignition Delay for<br>NOx Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| <ul><li>7. Paper title</li><li>8. Author (Affiliation)</li></ul>                                                                                                                                                                                                              | Drive Cycle Fuel Economy and Engine-Out Emissions Evaluation Using an<br>Opposed-Piston Sleeve-Valve Engine with Lean Operation and Ignition Delay for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| <ul><li>7. Paper title</li><li>8. Author (Affiliation)</li><li>9. Abstract</li><li>In small vehicle application</li></ul>                                                                                                                                                     | Drive Cycle Fuel Economy and Engine-Out Emissions Evaluation Using an<br>Opposed-Piston Sleeve-Valve Engine with Lean Operation and Ignition Delay for<br>NOx Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

| 1. Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | October 10 <sup>th</sup> Thursday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2. Room.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 201B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 3. Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9:00 - 10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 4. Session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HCCI II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 5. Chair (Affiliation),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tomoo Shiozaki (Honda R&D Co., Ltd.),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Co-chair (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Roberto Gentili (University of Pisa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20139070 / 2013-32-9070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A Study of Fuel and EGR Stratification to Reduce Pressure-Rise Rates in a HCCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kyohei Ozaki, Dong-Won Jung, Norimasa Iida (Keio University)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Problem of HCCI combusti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on is knocking due to a steep heat release by the ignition that is occurred in each local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t is considered that dispersion of auto-ignition timing at each local area in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | essary to prevent this problem. One of technique of this solution is to make thermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| stratification. It could be m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ade by using two-stage ignition fuel, which has large heat release at low temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| reaction. Dispersion of fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | concentration leads to difference of temperature histories while combustion phasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | area. Also, EGR gas stratification could make difference of temperature histories at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | that of the characteristics. This study examines the effect of mixing stratification by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fuel and CO2. A single-cylinder engine equipped with optical access was used in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | al analysis was executed. This study shows that stratified mixtures of the fuel and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EGR gas make differences of the temperature histories at each local area, which results in difference of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| combustion phasing at each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | h local area in combustion chamber and reduction of PRR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 10. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20139083 / 2013-32-9083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 10. Paper No.(JSAE/SAE)<br>11. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 10. Paper No.(JSAE/SAE)<br>11. Paper title<br>12. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 10. Paper No.(JSAE/SAE)11. Paper title12. Author (Affiliation)13. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM<br>Shota Ito, Hiroki Ikeda, Dong-Won Jung, Norimasa Iida (Keio University)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 10. Paper No.(JSAE/SAE)11. Paper title12. Author (Affiliation)13. AbstractThe charge stratification I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM<br>Shota Ito, Hiroki Ikeda, Dong-Won Jung, Norimasa Iida (Keio University)<br>has been thought as one of the ways to reduce the sharp pressure rises of HCCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| <ul> <li>10. Paper No.(JSAE/SAE)</li> <li>11. Paper title</li> <li>12. Author (Affiliation)</li> <li>13. Abstract</li> <li>The charge stratification I combustion. The objective of the strate of the</li></ul>  | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM<br>Shota Ito, Hiroki Ikeda, Dong-Won Jung, Norimasa Iida (Keio University)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| <ul> <li>10. Paper No.(JSAE/SAE)</li> <li>11. Paper title</li> <li>12. Author (Affiliation)</li> <li>13. Abstract</li> <li>The charge stratification I combustion. The objective of EGR gas stratifications for</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM<br>Shota Ito, Hiroki Ikeda, Dong-Won Jung, Norimasa Iida (Keio University)<br>has been thought as one of the ways to reduce the sharp pressure rises of HCCI<br>of this study is to evaluate the potential of equivalence ratio, initial temperature, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| <ul> <li>10. Paper No.(JSAE/SAE)</li> <li>11. Paper title</li> <li>12. Author (Affiliation)</li> <li>13. Abstract</li> <li>The charge stratification I combustion. The objective of EGR gas stratifications for the stratified pre-mixture</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM<br>Shota Ito, Hiroki Ikeda, Dong-Won Jung, Norimasa Iida (Keio University)<br>has been thought as one of the ways to reduce the sharp pressure rises of HCCI<br>of this study is to evaluate the potential of equivalence ratio, initial temperature, and<br>reducing pressure-rise rate of HCCI combustion. Using rapid compression machine,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <ul> <li>10. Paper No.(JSAE/SAE)</li> <li>11. Paper title</li> <li>12. Author (Affiliation)</li> <li>13. Abstract</li> <li>The charge stratification I combustion. The objective of EGR gas stratifications for the stratified pre-mixture temperature traces during</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM<br>Shota Ito, Hiroki Ikeda, Dong-Won Jung, Norimasa Iida (Keio University)<br>has been thought as one of the ways to reduce the sharp pressure rises of HCCI<br>of this study is to evaluate the potential of equivalence ratio, initial temperature, and<br>reducing pressure-rise rate of HCCI combustion. Using rapid compression machine,<br>is charged, and compressed to analyze the change of in-cylinder gas pressure and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| <ul> <li>10. Paper No.(JSAE/SAE)</li> <li>11. Paper title</li> <li>12. Author (Affiliation)</li> <li>13. Abstract</li> <li>The charge stratification I combustion. The objective of EGR gas stratifications for the stratified pre-mixture temperature traces during CHEMKIN are conducted and EGR gas stratification</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM<br>Shota Ito, Hiroki Ikeda, Dong-Won Jung, Norimasa Iida (Keio University)<br>has been thought as one of the ways to reduce the sharp pressure rises of HCCI<br>of this study is to evaluate the potential of equivalence ratio, initial temperature, and<br>reducing pressure-rise rate of HCCI combustion. Using rapid compression machine,<br>is charged, and compressed to analyze the change of in-cylinder gas pressure and<br>g compression process. Based on the experiment results, numerical calculations by<br>to more specifically analyze the potential of equivalence ratio, initial temperature,<br>ns on the reduction of pressure rise rate. Multi-zone model is used to simulate the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| <ul> <li>10. Paper No.(JSAE/SAE)</li> <li>11. Paper title</li> <li>12. Author (Affiliation)</li> <li>13. Abstract</li> <li>The charge stratification I combustion. The objective of EGR gas stratifications for the stratified pre-mixture temperature traces during CHEMKIN are conducted and EGR gas stratification, fuel</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM<br>Shota Ito, Hiroki Ikeda, Dong-Won Jung, Norimasa Iida (Keio University)<br>has been thought as one of the ways to reduce the sharp pressure rises of HCCI<br>of this study is to evaluate the potential of equivalence ratio, initial temperature, and<br>reducing pressure-rise rate of HCCI combustion. Using rapid compression machine,<br>is charged, and compressed to analyze the change of in-cylinder gas pressure and<br>g compression process. Based on the experiment results, numerical calculations by<br>to more specifically analyze the potential of equivalence ratio, initial temperature,<br>ns on the reduction of pressure rise rate. Multi-zone model is used to simulate the<br>stratification and EGR gas stratification of in-cylinder charge as like real engine.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| <ul> <li>10. Paper No.(JSAE/SAE)</li> <li>11. Paper title</li> <li>12. Author (Affiliation)</li> <li>13. Abstract</li> <li>The charge stratification I combustion. The objective of EGR gas stratifications for the stratified pre-mixture temperature traces during CHEMKIN are conducted and EGR gas stratification, fuel Then, the results from muture temperature from muture temperature traces from muture temperature traces during the end to be a stratification of the stratification of the stratification fuel the muture temperature traces during the end to be a stratification of the stratificati</li></ul> | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM<br>Shota Ito, Hiroki Ikeda, Dong-Won Jung, Norimasa Iida (Keio University)<br>has been thought as one of the ways to reduce the sharp pressure rises of HCCI<br>of this study is to evaluate the potential of equivalence ratio, initial temperature, and<br>reducing pressure-rise rate of HCCI combustion. Using rapid compression machine,<br>is charged, and compressed to analyze the change of in-cylinder gas pressure and<br>g compression process. Based on the experiment results, numerical calculations by<br>to more specifically analyze the potential of equivalence ratio, initial temperature,<br>ns on the reduction of pressure rise rate. Multi-zone model is used to simulate the<br>stratification and EGR gas stratification of in-cylinder charge as like real engine.<br>Ilti-zone model are compared with that from single-zone model to clearly verify the                                                                                                                                                                                                                                                                                                                                                                  |  |
| <ul> <li>10. Paper No.(JSAE/SAE)</li> <li>11. Paper title</li> <li>12. Author (Affiliation)</li> <li>13. Abstract</li> <li>The charge stratification I combustion. The objective of EGR gas stratifications for the stratified pre-mixture temperature traces during CHEMKIN are conducted and EGR gas stratification, fuel Then, the results from mu effects of three stratification</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM<br>Shota Ito, Hiroki Ikeda, Dong-Won Jung, Norimasa Iida (Keio University)<br>has been thought as one of the ways to reduce the sharp pressure rises of HCCI<br>of this study is to evaluate the potential of equivalence ratio, initial temperature, and<br>reducing pressure-rise rate of HCCI combustion. Using rapid compression machine,<br>is charged, and compressed to analyze the change of in-cylinder gas pressure and<br>g compression process. Based on the experiment results, numerical calculations by<br>to more specifically analyze the potential of equivalence ratio, initial temperature,<br>ns on the reduction of pressure rise rate. Multi-zone model is used to simulate the<br>stratification and EGR gas stratification of in-cylinder charge as like real engine.<br>Ilti-zone model are compared with that from single-zone model to clearly verify the<br>ns on pressure-rise rate. The results from comparison between single-zone model and                                                                                                                                                                                                                                                                           |  |
| <ul> <li>10. Paper No.(JSAE/SAE)</li> <li>11. Paper title</li> <li>12. Author (Affiliation)</li> <li>13. Abstract</li> <li>The charge stratification I combustion. The objective of EGR gas stratifications for the stratified pre-mixture temperature traces during CHEMKIN are conducted and EGR gas stratification, fuel Then, the results from mu effects of three stratificatio multi-zone model show tha</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM<br>Shota Ito, Hiroki Ikeda, Dong-Won Jung, Norimasa Iida (Keio University)<br>has been thought as one of the ways to reduce the sharp pressure rises of HCCI<br>of this study is to evaluate the potential of equivalence ratio, initial temperature, and<br>reducing pressure-rise rate of HCCI combustion. Using rapid compression machine,<br>is charged, and compressed to analyze the change of in-cylinder gas pressure and<br>g compression process. Based on the experiment results, numerical calculations by<br>to more specifically analyze the potential of equivalence ratio, initial temperature,<br>ns on the reduction of pressure rise rate. Multi-zone model is used to simulate the<br>stratification and EGR gas stratification of in-cylinder charge as like real engine.<br>Ilti-zone model are compared with that from single-zone model to clearly verify the<br>ns on pressure-rise rate. The results from comparison between single-zone model and<br>at EGR gas stratification was the most effective to disperse ignition timing compared                                                                                                                                                                                  |  |
| <ul> <li>10. Paper No.(JSAE/SAE)</li> <li>11. Paper title</li> <li>12. Author (Affiliation)</li> <li>13. Abstract</li> <li>The charge stratification I combustion. The objective of EGR gas stratifications for the stratified pre-mixture temperature traces during CHEMKIN are conducted and EGR gas stratification, fuel Then, the results from mu effects of three stratification multi-zone model show that to the thermal stratification</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM<br>Shota Ito, Hiroki Ikeda, Dong-Won Jung, Norimasa Iida (Keio University)<br>has been thought as one of the ways to reduce the sharp pressure rises of HCCI<br>of this study is to evaluate the potential of equivalence ratio, initial temperature, and<br>reducing pressure-rise rate of HCCI combustion. Using rapid compression machine,<br>is charged, and compressed to analyze the change of in-cylinder gas pressure and<br>g compression process. Based on the experiment results, numerical calculations by<br>to more specifically analyze the potential of equivalence ratio, initial temperature,<br>ns on the reduction of pressure rise rate. Multi-zone model is used to simulate the<br>l stratification and EGR gas stratification of in-cylinder charge as like real engine.<br>Ilti-zone model are compared with that from single-zone model to clearly verify the<br>ns on pressure-rise rate. The results from comparison between single-zone model and<br>and fuel stratification was the most effective to disperse ignition timing compared<br>on and fuel stratification when setting the same time differences of ignition timing                                                                                          |  |
| <ul> <li>10. Paper No.(JSAE/SAE)</li> <li>11. Paper title</li> <li>12. Author (Affiliation)</li> <li>13. Abstract</li> <li>The charge stratification I combustion. The objective of EGR gas stratifications for the stratified pre-mixture temperature traces during CHEMKIN are conducted and EGR gas stratification, fuel Then, the results from mu effects of three stratification multi-zone model show that to the thermal stratification</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20139083 / 2013-32-9083<br>Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines<br>Based on Multi-Zone Modeling and Experiments by using RCM<br>Shota Ito, Hiroki Ikeda, Dong-Won Jung, Norimasa Iida (Keio University)<br>has been thought as one of the ways to reduce the sharp pressure rises of HCCI<br>of this study is to evaluate the potential of equivalence ratio, initial temperature, and<br>reducing pressure-rise rate of HCCI combustion. Using rapid compression machine,<br>is charged, and compressed to analyze the change of in-cylinder gas pressure and<br>g compression process. Based on the experiment results, numerical calculations by<br>to more specifically analyze the potential of equivalence ratio, initial temperature,<br>ns on the reduction of pressure rise rate. Multi-zone model is used to simulate the<br>l stratification and EGR gas stratification of in-cylinder charge as like real engine.<br>Ilti-zone model are compared with that from single-zone model to clearly verify the<br>ns on pressure-rise rate. The results from comparison between single-zone model and<br>and fuel stratification was the most effective to disperse ignition timing compared<br>on and fuel stratification when setting the same time differences of ignition timing<br>1. Among the three stratifications of in-cylinder charge, fuel stratification was the |  |

| 1. Date                 | October 10 <sup>th</sup> Thursday                                       |
|-------------------------|-------------------------------------------------------------------------|
| 2. Room.                | 201C                                                                    |
| 3. Time                 | 9:00 - 10:00                                                            |
| 4. Session              | Engine Controls III                                                     |
| 5. Chair (Affiliation), | Takashi Mitome (SUZUKI MOTOR CORPORATION),                              |
| Co-chair (Affiliation)  | Thorsten Raatz (Robert Bosch LLC)                                       |
|                         |                                                                         |
| 6. Paper No.(JSAE/SAE)  | 20139065 / 2013-32-9065                                                 |
| 7. Paper title          | Detecting the Misfire of Motorcycle Engine with Wide Band Oxygen Sensor |
| 8. Author (Affiliation) | Yameogo Amadou, Chang-Tai Wu, Yu-Cheng Jiang, and Jau-Huai Lu           |

(National Chung Hsing University)

#### 9. Abstract

Use of catalyst in engines has entailed a radical increase in the importance of misfire detection. When a misfire occurs, hydrocarbon emissions will increase and the unburned fuel can damage the catalyst by overheating. On-Board Diagnostics II (OBDII) regulations are still not applied to motorcycle or moped yet. However its application is under discussion in European Union. In Taiwan, OBD is scheduled to be implemented soon. Many strategies of misfire detection have been developed, including variation in engine shaft angular speed, spark plug voltage, cylinder pressure, oxygen sensor signal, knowledge based expert system, and neural networks. WE propose a new method to use the real time signals of a wide band oxygen sensor to detect misfire where, misfire was induced on purpose with a misfire generator. The sensor and the misfire trigger signals were recorded simultaneously. It was found that when a misfire occurs, a spike of sensor signal would follow due to instantaneous variation of the oxygen content in the exhaust flow. This signal was then processed to detect the occurrence of misfire. Results of test show that differentiated signals have good correlation with the misfire trigger. Misfire is detected by monitoring the amplitude of differentiated signals. The scheme has been shown to detect the misfiring condition reliably up to 5000rpm.

| 6. Paper No.(JSAE/SAE)  | 20139003 / 2013-32-9003                                                  |
|-------------------------|--------------------------------------------------------------------------|
| 7. Paper title          | FlexFuel Strategy for 2-wheeler                                          |
| 8. Author (Affiliation) | Erika Xavier, Ariel Bepu, Martin Leder, Walter Arens (Robert Bosch Ltda) |
| 0.41.                   |                                                                          |

#### 9. Abstract

Brazilian energetic matrix is based on two fuels: gasoline (E22: 78% pure gasoline + 22% anhydrous ethanol) and ethanol (E100: 93% anhydrous ethanol + 7% water).

A Flex Fuel 2-wheeler (motorcycle) engine management software strategy was developed in order to meet Brazilian market demand based on the energetic matrix mentioned above and a worldwide market forecast growth in the corresponding small engines segment.

As 2-wheeler engine configuration and electric architecture is simpler than passenger cars, a premise was established: to develop a completely new Flex Fuel system for the 2-wheeler segment with functionalities simpler and easier to calibrate than actual concept used for Flex Fuel passenger cars.

This paper presents the result of this study: a Flex Fuel system able to operate with gasoline (E22), ethanol (E100) or any mixture of both fuels with similar behavior in an easy-to-calibrate system.



| 1. Date                 | October 10 <sup>th</sup> Thursday   |
|-------------------------|-------------------------------------|
| 2. Room.                | 201D                                |
| 3. Time                 | 9:00 - 10:00                        |
| 4. Session              | Vehicle Dynamics & Safety I         |
| 5. Chair (Affiliation), | Masayuki Baba (Honda R&D Co.,Ltd.), |
| co-chair (Affiliation)  | Brent Dohner (Lubrizol UK)          |
|                         |                                     |
| 6. Paper No.(JSAE/SAE)  | 20139026 / 2013-32-9026             |

|   | 6. Paper No.(JSAE/SAE)  | 20139026 / 2013-32-9026                                                     |
|---|-------------------------|-----------------------------------------------------------------------------|
|   | 7. Paper title          | Effects of the Compensated Control of Gradient for the Haptic Throttle Grip |
|   | 8. Author (Affiliation) | Manabu Fujito, Yasunobu Harazono and Kouji Sakai (Yamaha Motor Co., Ltd.)   |
| 2 |                         |                                                                             |

Recently, there have been many reports about developing control systems that actuate engines and brakes based on friction circle. We are researching the control system for motorcycles, which adds the return torque of throttle grip based on it for informing the limit of tire grip on the driving wheel. This throttle grip is a haptic display, offers haptic signals by controlling the motor connected to the throttle grip as a HMI. From the results of riding tests, the system was found helpful for riders to control the throttle grip as well as feeling easy about knowing the limit of tire grip. But it is known that the friction circle of a driving wheel depends on the normal force which changes by the gradient of road, acceleration and so on. The compensated control for changing the normal force by gradient was made to improve the throttle grip control system. The results of riding tests with the compensated system, we found that this system is important for the controls based on friction circle and it makes the haptic signals come close to the timing that riders want.

| 6. Paper No.(JSAE/SAE)  | 20139106 / 2013-32-9106                                               |
|-------------------------|-----------------------------------------------------------------------|
| 7. Paper title          | Development of New Concept Two-Wheel Steering System for Motorcycles  |
| 8. Author (Affiliation) | Tetsuya Kimura, Yusuke Ando, Eiichiro Tsujii (Yamaha Motor Co., Ltd.) |
| 9 Abstract              |                                                                       |

#### 9. Abstract

This paper describes the development of a new concept twowheel steering system for realizing motorcycle motion control. By considering the whole of the main frame as the rear-wheel steering axis, it was possible to move the rearwheel steering system from the conventional installation position at the rear arm to the head pipe. As a result, the developed two-wheel steering system is both lightweight and compact. This two-wheel steering system was installed in a motorcycle, and starting and stopping tests were carried out with two people riding on the motorcycle. The test results confirmed that the two-wheel steering system is capable of changing the motion characteristics of the motorcycle in actual riding. Furthermore, by calculating the equivalent wheel alignment of this system, this paper also theoretically demonstrates that these changes in motion characteristics are caused by changes in caster and trail.

| 1. Date                 | October 10 <sup>th</sup> Thursday                                                |
|-------------------------|----------------------------------------------------------------------------------|
| 2. Room.                | 201A                                                                             |
| 3. Time                 | 10:30 - 12:00                                                                    |
| 4. Session              | Emission III                                                                     |
| 5. Chair (Affiliation), | Hiromi Deguchi (SUZUKI MOTOR CORPORATION),                                       |
| co-chair (Affiliation)  | Kai W. Beck (MOT GmbH)                                                           |
|                         |                                                                                  |
| 6. Paper No.(JSAE/SAE)  | 20139091 / 2013-32-9091                                                          |
| 7. Paper title          | 1-D Modeling and Experimental Evaluation of Secondary Air Injection system for a |
|                         | Small SI Engine                                                                  |
| 8. Author (Affiliation) | Pratap C Kavekar (TVS Motor CO Ltd)                                              |

In order to comply with the existing emission norms of BSIII in India or EURO III and beyond that also, it is not sufficient to use the catalytic converter technology alone over the wide range of engine operating maps. Different studies across the world have proved that the cost, drivability, operating range against AFR, heat dissipation rate characteristics of catalytic converter limit their use in startup and idling conditions. One common way to tackle this condition is to use the Secondary Air Injection (SAI) system. In this system, small amount of air injected after the exhaust port to initiate the thermal oxidation of gases. The right amount of air injected at the right time and at right location will reduce the emission by 37-90%. In the following study, SI engine vehicle with single cylinder, 160 cc and having carburetor is used as a test vehicle to evaluate the performance of SAI. The SAI system is modeled in AVL BOOST software and validated against the experimental data. The experimental data is collected at transient condition of IDC (Indian Driving Cycle). SAI system of the same vehicle is modified for different parameters like reed stopper height, SAI outlet pipe length and angle of secondary air injection. In order to avoid the complexity in experiments, DOE technique is used. The optimum parameters of SAI are determined for maximum CO conversion efficiency with uncoated CAT. The combination giving best conversion efficiency is then tested with coated CAT for emission cycle. Model results and the experimental results are compared on the basis of mass flow rate.

| 6. Paper No.(JSAE/SAE)  | 20139130 / 2013-32-9130                                                       |
|-------------------------|-------------------------------------------------------------------------------|
| 7. Paper title          | A demonstration of emissions' behaviour of various handheld engines including |
|                         | investigations on particulate matter                                          |
| 8. Author (Affiliation) | Cécile Favre, John May, Dirk Bosteels (Association for Emissions Control by   |
|                         | Catalyst (AECC) AISBL ), Jürgen Tromayer, Gerd Neumann (Graz University of    |
|                         | Technology)                                                                   |

#### 9. Abstract

To get an overview of the emission situation in the field of small non-road mobile machinery powered by various types of SI engines, the Association for Emissions Control by Catalyst (AECC), together with the Institute for Internal Combustion Engines and Thermodynamics (IVT) of Graz University of Technology, conducted a customized test program. The main goal for this campaign was to derive information regarding the emissions of regulated gaseous components (following European Directive 97/68/EC) as well as particulate matter. With regard to the big variety of different engines that are available on the European and North-American market, the most representative ones had to be chosen. This resulted in a pool of test devices to cover different engine working principles (2-Stroke and 4-Stroke), technological standards (low-cost and professional tools) and different emissions control strategies (advanced combustion and exhaust gas aftertreatment). The test results illustrate a wide range of emissions of small handheld applications. Particulate matter emissions were also measured in terms of mass and number and their chemical composition was evaluated via Thermo-Gravimetric Analysis of the PM deposit.

| 6. Paper No.(JSAE/SAE)  | 20139150 / 2013-32-9150                                                                                                                                                                                                                                                                                                             |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. Paper title          | Physical Characterization of Biodiesel Particle Emission by Electron Microscopy                                                                                                                                                                                                                                                     |
| 8. Author (Affiliation) | Preechar Karin, Yutthana Songsaengchan (King Mongkut's Institute of Technology<br>Ladkrabang), Songtam Laosuwan, Chinda Charoenphonphanich (King Mongkut's<br>Institute of Technology Ladkrabang), Nuwong Chollacoop (National Science and<br>Technology Development Agency), Katsunori Hanamura (Tokyo Institute of<br>Technology) |

#### 9. Abstract

Nanostructures of diesel and biodiesel engine particulate matters (PMs) were investigated by using a Transmission Electron Microscopy (TEM). The average single particle sizes of biodiesel and diesel PMs are approximately 30-40 nm and 50-60 nm, respectively. Image processing process was used to estimate each carbon platelet length by using TEM image. The average carbon platelet length of biodiesel and diesel PMs are in the range of 0.1-7.0 nm. Moreover, carbon atoms per cubic volume of PMs are approximately 500-900. The result shows that engine load and fuel property are strongly impact on the size of single particle and carbon atom density of particle. This is one of interesting behaviors need to be investigated for better understanding. The results of this research would be used as basic information for design and develop removing process of PM emitted from engine combustion which using in diesel and biodiesel fuels.

| 1. Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | October 10 <sup>th</sup> Thursday                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Room.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 201B                                                                                                                                                                                                                                                                                                        |
| 3. Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10:30 - 12:00                                                                                                                                                                                                                                                                                               |
| 4. Session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HCCI III                                                                                                                                                                                                                                                                                                    |
| 5. Chair (Affiliation),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tomoo Shiozaki (Honda R&D Co., Ltd.),                                                                                                                                                                                                                                                                       |
| Co-chair (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Brian Callahan (Achates Power & Basco)                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                             |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20139069 / 2013-32-9069                                                                                                                                                                                                                                                                                     |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Closed-Loop Combustion Control of a HCCI Engine with Re-breathing EGR System                                                                                                                                                                                                                                |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yusuke Nakamura, Dong-Won Jung, Norimasa Iida (Keio University)                                                                                                                                                                                                                                             |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |
| This study experimentally investigates the control system and the algorithm after constructing a HCCI combustion control system for the development of a small HCCI engine fuelled with Dimethyl Ether (DME). This system can control four throttles for the mixing ratio of three gases of in-cylinder (stoichiometric pre-mixture, hot EGR gas and cold EGR gas). At first, the combustion behavior for combustion phasing retarded operation with cold and hot EGR was examined. Then, the potential of model-based and feed back control for HCCI combustion with change of the demand of IMEP was investigated. In the end, the limit of combustion-phasing retard for IMEP and PRR was explored. Results shows that to get high IMEP with acceptable PRR and low coefficient of variation of IMEP, crank angle of 50% heat release (CA50) should be controlled at constant phasing in the expansion stroke. CA50 can be controlled by changing the ratio of pre-mixture, hot EGR gas and cold EGR gas with throttles. Due to the cycle-to-cycle variation, the change of total mass of fuel in cylinder has a big effect on IMEP. After misfire, unburned fuel and intermediates are supplied to next cycle. This leads to the total mass of fuel                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                             |
| 6. Paper No.(JSAE/SAE)<br>7. Paper title<br>8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20139171 / 2013-32-9171<br>A Study of Supercharged HCCI Combustion using In-cylinder Spectroscopic<br>Techniques and Chemical Kinetic Calculation<br>Yasuhide Abe, Yuma Ishizawa, Go Emori, Mitsuo Asanuma, Akira Iijima, Hideo<br>Shoji (Nihon University), Kazuhito Misawa, Yusuke Kiguti, Hiraku Kojima, |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Shunichi Mori, Kenjiro Nakama (SUZUKI MOTOR CORPORATION)                                                                                                                                                                                                                                                    |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |
| A great deal of interest is focused on Homogeneous Charge Compression Ignition (HCCI) combustion today as a combustion system enabling internal combustion engines to attain higher efficiency and cleaner exhaust emissions. Because the air-fuel mixture is compression-ignited in an HCCI engine, control of the ignition timing is a key issue. Additionally, because the mixture ignites simultaneously at multiple locations in the combustion chamber, it is necessary to control the resultant rapid combustion, especially in the high-load region. Supercharging can be cited as one approach that is effective in facilitating high-load operation of HCCI engines. Supercharging increases the intake air quantity to increase the heat capacity of the working gas, thereby lowering the combustion temperature for injection of the same quantity of fuel. In this study, experiments were conducted to investigate the effects of supercharging on combustion characteristics in an HCCI engine. Light emission and absorption spectroscopic measurement techniques were used to investigate the combustion behavior in detail. Chemical kinetic simulations were also conducted to analyze the reaction characteristics in detail. The results made clear that the raising the intake air pressure under a condition of a constant quantity                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |
| $C$ D $\ldots$ N <sub>L</sub> (ICAE/CAE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20120152 / 2012 20 0152                                                                                                                                                                                                                                                                                     |
| 6. Paper No.(JSAE/SAE)<br>7. Paper title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20139172 / 2013-32-9172<br>Evaluation of the Performance of a Boosted HCCI Gasoline Engine with Blowdown<br>Supercharge System                                                                                                                                                                              |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Shunsuke Gotoh, Tatsuya Kuboyama, Yasuo Moriyoshi (Chiba University), Koichi<br>Hatamura (Hatamura Engine Research Office), Toshio Yamada (IDAJ Co., LTD.),<br>Junichi Takanashi, Yasuhiro Urata (Honda R&D Co., LTD.)                                                                                      |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                             |
| HCCI combustion can realize low NOx and particulate emissions and high thermal efficiency. Therefore, HCCI combustion has a possibility of many kinds of applications, such as an automotive powertrain, general-purpose engine, motorcycle engine and electric generator. However, the operational range using HCCI combustion in terms of speed and load is restricted because the onset of ignition and the heat release rate cannot be controlled directly. For the extension of the operational range using either an external supercharger or a turbocharger is promising. The objective of this research is to investigate the effect of the intake pressure on the HCCI high load limit and HCCI combustion characteristics with blowdown supercharging (BDSC) system. The intake pressure (Pin) and temperature (Tin) were varied as experimental parameters. The intake pressure was swept from 100 kPa (naturally aspirated) to 200 kPa using an external mechanical supercharger. The experimental results showed that the maximum load successfully increased with increasing the intake pressure. The highest load in this study was 935kPa in IMEPg at the condition of 200 kPa in Pin and 32 °C in Tin. The maximum load of boosted BDSC-HCCI engine can be achieved comparable to the full load of naturally aspirated SI engine. In addition, for conditions with above 200 kPa in Tin, A/F and G/F could be almost the same. The comparison of heat release rate decreased |                                                                                                                                                                                                                                                                                                             |

| 1. Date                 | October 10 <sup>th</sup> Thursday                          |
|-------------------------|------------------------------------------------------------|
| 2. Room.                | 201C                                                       |
| 3. Time                 | 10:30 - 12:00                                              |
| 4. Session              | Engine Controls IV                                         |
| 5. Chair (Affiliation), | Bo-Chiuan Chen (National Taipei University of Technology), |
| Co-chair (Affiliation)  | Thorsten Raatz (Robert Bosch LLC)                          |
|                         |                                                            |
| 6. Paper No.(JSAE/SAE)  | 20139007 / 2013-32-9007                                    |
| 7. Paper title          |                                                            |
| 8. Author (Affiliation) |                                                            |
| 0 Abstract              |                                                            |

|  | < Canceled | > |  |
|--|------------|---|--|
|  |            |   |  |
|  |            |   |  |
|  |            |   |  |
|  |            |   |  |
|  |            |   |  |

| 6. Paper No.(JSAE/SAE)  | 20139020 / 2013-32-9020                                                      |
|-------------------------|------------------------------------------------------------------------------|
| 7. Paper title          | Thermal Optimization Process for Small Engine Control Units                  |
| 8. Author (Affiliation) | Christian Schweikert, Marco Nicolò, Dirk Schweitzer (Infineon Technology AG, |
|                         | Germany), David Witt (Infineon Technologies, North America)                  |

9. Abstract

The Engine Control Unit (ECU) for small engines is facing challenges with regard to performance, size and cost. In many instances, the customer requirements often contradict each other. Examples include higher performance at lower cost or smaller size, both of which can cause thermal challenges. In order to meet varying performance requirements in a platform approach, the ECU must provide a wide range of functionality. Providing a solution that can meet these flexible requirements will result in an increased component count and larger ECU size. An optimized feature set in the right package can help alleviate these issues. The ECU must be impervious to a wide range of environmental conditions, such as temperature, humidity and vibration. Restricted air flow must also be considered when designing an ECU. Existing approaches often apply the use of large aluminum housings to provide a strong mechanical support with good thermal performance. As the market pushes for lower cost solutions, housing materials are being evaluated as cheaper alternatives become available. Alternative housing materials will drive the electronics design to either reduce the power dissipation or improve thermal performance.

| 6. Paper No.(JSAE/SAE)  | 20139094 / 2013-32-9094                                                    |
|-------------------------|----------------------------------------------------------------------------|
| 7. Paper title          | Implementation of Software and Hardware solutions for battery-less systems |
| 8. Author (Affiliation) | Marco Cortecchia, Claudio Gonella (Mectronik s.r.l.)                       |
| 9 Abstract              |                                                                            |

The modern market of small engines requires low-cost solutions compatible with anti-pollution regulations. On applications without electric starter it is possible to remove the battery, but hardware and software aspects must be investigated and special solutions implemented. The main problems occur during engine fire-up (engine start), because using kick-start, only a little bit more than one engine cycle is possible for a single kick. The second aspect is that no energy is available before the crank shaft is moving, and the generator is able to supply energy to the electrical systems. Our target is to implement solutions able to start up the ECU very quickly, ensure low consumption, and be ready to recognize engine position in the shortest possible time.

| 1. Date                 | October 10 <sup>th</sup> Thursday                                         |
|-------------------------|---------------------------------------------------------------------------|
| 2. Room.                | 201D                                                                      |
| 3. Time                 | 10:30 - 12:00                                                             |
| 4. Session              | Vehicle Dynamics & Safety II                                              |
| 5. Chair (Affiliation), | Masayuki Baba (Honda R&D Co.,Ltd.),                                       |
| co-chair (Affiliation)  | Robert Kee (Queen's University Belfast)                                   |
|                         |                                                                           |
| 6. Paper No.(JSAE/SAE)  | 20139165 / 2013-32-9165                                                   |
| 7. Paper title          | Development of Technology for Measuring Dynamic Deformation of Motorcycle |
|                         | Bodies                                                                    |
| 8. Author (Affiliation) | Yasushi Nakamura, Kazuhiro Ichikawa, Takumi Kawasaki, Yasuhisa Okabe,     |
|                         | Hiroshi Ishii, Akiyuki Yamasaki (Kawasaki Heavy Industries, Ltd.)         |

In this study, a technology for measuring dynamic deformation of motorcycle bodies in running is developed. The deformation has significant association with the maneuverability and stability of motorcycles. The developed system by combining the numerical simulation and the measurement of strains enable application of the measurement of dynamic deformation of motorcycles. This paper reports technical details of the system and measurement results of dynamic deformation of motorcycle bodies.

| 6. Paper No.(JSAE/SAE)  | 20139173 / 2013-32-9173                                                            |
|-------------------------|------------------------------------------------------------------------------------|
| 7. Paper title          | Evaluation of Injury Risks and Benefits of a Crush Protection Device (CPD) for     |
|                         | All-Terrain Vehicles (ATVs)                                                        |
| 8. Author (Affiliation) | John W. Zellner, Scott A. Kebschull, R. Michael Van Auken (Dynamic Research, Inc.) |
| 9. Abstract             |                                                                                    |

An updated evaluation of the effects on predicted injuries of an example crush protective device (CPD) proposed for application to All-Terrain Vehicles (ATVs) is described. As in previous evaluations, this involved extending and applying the test and analysis methods defined in ISO 13232 (2005) for motorcycle impacts, to evaluate the effects of the example CPD in a sample of simulated ATV overturn events. Updated modeling refinements included lowering the energy levels of the simulated overturn events; accounting for potential mechanical/ traumatic (compressive) asphyxia mechanisms; refining and calibrating the force-deflection characteristics of helmet, head, legs and soil so as to reduce potential over-prediction of head and leg injuries; and calibrating the simulation against aggregated injury distributions from actual accidents. Approximately 3,080 computer simulations were run, and the results indicated that, for the simulation sample and in comparison to the helmeted baseline ATV, addition of...

| 6. Paper No.(JSAE/SAE)  | 20139175 / 2013-32-9175                                                   |
|-------------------------|---------------------------------------------------------------------------|
| 7. Paper title          | Testing of ABS Systems for 2-Wheelers via Hardware-in-the-Loop Technology |
| 8. Author (Affiliation) | Steven Shenker, Rosana Yamasaki, Tobias Kreuzinger (ETAS K.K., Japan)     |
| 9 Abstract              |                                                                           |

In recent years, driving safety systems such as Anti-Lock Brake Systems (ABS) can be found more and more as standard components in 2-wheeler applications. As these safety critical systems are produced in large numbers, it is of highest interest to keep production and development cost at a minimum on one hand and provide best reliability of the system on the other. In order to attain these cost and quality objectives, hardware-in-the-loop (HIL) technology provides excellent opportunities for test and validation. This paper presents a HIL testing framework for 2-wheeler ABS systems which is optimized in terms of cost and usability for test engineers. The setup comprises an ABS Electronic Control Unit (ECU) for 2-wheelers, a single PC ETAS LABCAR system with hardware I/O boards and LABCAR Operator as software package for real time configuration and control of the entire system. Finally, a simulated vehicle model was ...

| 1. Date                                                                                                                                                                                                                                                                                                                                                                                                   | October 10 <sup>th</sup> Thursday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2. Room.                                                                                                                                                                                                                                                                                                                                                                                                  | 201E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 3. Time                                                                                                                                                                                                                                                                                                                                                                                                   | 10:30 - 12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 4. Session                                                                                                                                                                                                                                                                                                                                                                                                | NVH Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 5. Chair (Affiliation),                                                                                                                                                                                                                                                                                                                                                                                   | Tadao Okazaki (LEMA / Kubota Corporation),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| co-chair (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                    | Roland Kirchberger (Graz University of Technology)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                    | 20139001 / 2013-32-9001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                            | Application of Novel Micro-Grooved Elements to Small Engine Silencer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                   | Fabio Auriemma, Hans Rämmal, Jüri Lavrentjev (Tallinn University of Technology)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| aerospace and room acoust<br>micro-paths where the energy<br>Composed of a multi-layer<br>fibrous material based solu-<br>are designed as cost effect<br>present in silencer units. It<br>is presented and experime<br>by adapting the theoretic<br>simulated impedance and a<br>data by following the cla-<br>micro-perforated element<br>implementation of the MGEs are<br>believed to provide the reco | MGEs) represent a novel technology developed for noise control in automotive,<br>tics. The key concept of the MGEs is based on the use of micro-grooved layers forming<br>ergy dissipation of the acoustic waves is primarily originated by viscous friction.<br>In fiber-less material, the MGEs represent a potential alternative to the traditional<br>ations as well as to the increasingly popular micro-perforated elements (MPEs). MGEs<br>etive elements, found to be suitable for substitution of fibrous materials, typically<br>in this paper, a design procedure for a fiber-less small engine silencer based on MGEs<br>entally validated. Hereby, the acoustical performance of the MGEs has been modeled<br>cal models provided by Allard and Maa for rectangular and circular ducts. The<br>absorption coefficient of a MGE have been compared to the experimentally determined<br>ssical twoport approach. The absorption coefficients of micro-grooved sample and<br>have also been analyzed in comparison. As the first practical noise control<br>Es the novel acoustic panels have been utilized in a Formula SAE racecar silencer. In<br>the designed to acoustically behave as locally reacting surfaces. The use of the MGEs is<br>function in soot contamination that typically occurs in silencers with micro-perforated<br>or also provides an overview of several silencer configurations equipped with MGEs, |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                           | esults in terms of transmission loss (TL), absorption and reflection coefficients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                            | The trial to quantify the feeling of sound & vibration ("Kodo-kan") for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                           | Motorcycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                   | Kenta Suzuki, Hitoshi Uchida, Shogo Kida, Tsutomu Sonehara, Keisuke Namekawa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                           | (SUZUKI MOTOR CORPORATION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| feeling of a "Kodo-kan" wh<br>physical quantity relevant<br>of an idling state for the pu<br>the feeling evaluation scor                                                                                                                                                                                                                                                                                  | motorcycle rider regards the sound and vibration which occurs from a motorcycle as a<br>hich is not unpleasant and becomes a part of comfortable nature. In this paper, the<br>to a feeling of a beat was extracted from the sound and oscillating measurement data<br>proper of quantification of the feeling evaluation of a "Kodo-kan" of the motorcycle, and<br>e prediction of a beat was tried from the physical quantity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 6. Paper No.(JSAE/SAE)                                                                                                                                                                                                                                                                                                                                                                                    | 20139164 / 2013-32-9164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 7. Paper title                                                                                                                                                                                                                                                                                                                                                                                            | Development of Intake Sound Control Technique for Sports-Type Motorcycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 8. Author (Affiliation)                                                                                                                                                                                                                                                                                                                                                                                   | Kenta Matsubara, Noritaka Nakamura, Yota Katsukawa, Kenichi Furuhashi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 9. Abstract                                                                                                                                                                                                                                                                                                                                                                                               | (Kawasaki Heavy Industries, Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Engine sound is one of the<br>is necessary to create an a<br>this paper, how we control<br>4 cylinder engine. To contr<br>transfer characteristics of<br>computational fluid dyna<br>pulsations across the val<br>revolutions in the intake<br>acoustic transfer character<br>acoustic tests based on t<br>controlling resonance in                                                                       | most important factors when selecting a motorcycle from various models. Therefore, it<br>ppealing sound in the rider's ears in addition to complying with noise regulations. In<br>intake sound is described through the study of a sports-type motorcycle with an inline<br>ol intake sound, both intake pressure pulsations generated by the engine and acoustic<br>if the intake system are important. It is shown by unsteady-state one-dimensional<br>unics analysis that specifications of the exhaust system affect intake pressure<br>ve overlap period. Therefore, to emphasize high order components of the engine<br>sound, for example, modifying the layout of the exhaust muffler is effective. Next,<br>ristics from the air cleaner box to the rider's ears of the motorcycle are investigated by<br>the air cleaner box by means of finite element analysis. And, it is illustrated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| experimentally that the sound in the rider's ears is created as intended by modifying the air cleaner box. As a result, it is shown that intake sound can be designed effectively by the proposed method.                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |